首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知齐次线性方程组(I)为又已知线性方程组(Ⅱ)的通解为x=k1(s,2,3,16)T+k2(2,1,2,t)T,其中k1,k2是任意常数.若方程组(I)与(Ⅱ)同解,试求m,n,s,t的值.
已知齐次线性方程组(I)为又已知线性方程组(Ⅱ)的通解为x=k1(s,2,3,16)T+k2(2,1,2,t)T,其中k1,k2是任意常数.若方程组(I)与(Ⅱ)同解,试求m,n,s,t的值.
admin
2016-01-11
62
问题
已知齐次线性方程组(I)为
又已知线性方程组(Ⅱ)的通解为x=k
1
(s,2,3,16)
T
+k
2
(2,1,2,t)
T
,其中k
1
,k
2
是任意常数.若方程组(I)与(Ⅱ)同解,试求m,n,s,t的值.
选项
答案
设η
1
=(s,2,3,16)
T
,η
2
=(2,1,2,t)
T
,依题意可知η
1
,η
2
为方程组(Ⅱ)的基础解系.把η
1
,η
2
分别代入方程组(I)中,得[*]以下证明当m=3,n=2,s=3,t=10时方程组(I)和(Ⅱ)同解. 此时方程组(Ⅱ)的基础解系为η
1
=(3,2,3,16)
T
,η
2
=(2,1,2,10)
T
. 先求方程组(I)的基础解系ξ
1
,ξ
2
,为此对方程组(I)的系数矩阵施以初等行变换,得[*]同解方程组为[*]其中k
1
,k
2
为任意常数. 于是方程组(I)的基础解系为ξ
1
=(0,1,0,2)
T
,ξ
2
=(1,0,1,4)
T
,要证方程组(I)与(Ⅱ)同解,只需证明(η
1
,η
2
)与(ξ
1
,ξ
2
)等价即可,为此[*]显然,r(ξ
1
,ξ
2
)=r(η
1
,η
2
)=r(ξ
1
,ξ
2
,η
1
,η
2
)=2,所以当m=3,n=2,s=3,t=10时方程组(I)与(Ⅱ)同解.
解析
本题是两个齐次线性方程组的同解问题,由于一个方程组已知,一个未知,故考虑用代入法,先把方程组(Ⅱ)两个解向量代入方程组(I)中,得到参数m,n,s,t的取值.注:要证明两个方程组同解,应先把方程组(I)的基础解系ξ
1
,ξ
2
求出来,再证其与方程组(Ⅱ)的基础解系等价即可.
转载请注明原文地址:https://jikaoti.com/ti/Z4DRFFFM
0
考研数学二
相关试题推荐
设三阶矩阵A的特征值为-1,1,2,其对应的特征向量为α1,α2,α3,令P=(3α2,-α3,2α1),则P-1AP等于().
[*]
设γ1,γ2是非齐次线性方程组Ax=b的两个不同的解,η1,η2是相应的齐次线性方程组Ax=0的基础解系,则Ax=b的通解为()。
设f(x)为可导函数,且满足条件则曲线y=f(x)在点(1,f(1))处的切线斜率为().
设函数f(x)是以T为周期的连续函数.(Ⅰ)证明:∫0x(t)dt可以表示成一个以T为周期的连续函数与kx之和,并求常数k;(Ⅱ)计算∫0xf(t)dt.
以y=C1+e-3x(C2cos2x+C3sin2x)为通解的常系数齐次线性微分方程可以为()
设f(x)在[0,+∞)上二阶可导,f(0)=0,f〞(x)<0,当0<a<x<b时,有()
设f(x)在[0,1]上有一阶连续导数,且f(0)=0,∫01xf(x)dx=0.证明:方程x[f(x)]2+f’(x)∫0xtf(t)dt=0在(0,1)内至少有两个不同的实根.
设f(x)在点x=0的某个邻域内二阶可导,且,试求f(0),f’(0)及f"(0)的值。
设A=(aij)是3阶非零矩阵,|A|为A的行列式,Aij为aij的代数余子式.若aij+Aij=0(i,j=1,2,3),则|A|=__________.
随机试题
张老师和赵老师是立身小学四年级二班的英语老师和数学老师。星期二上午第一节课是英语课,课堂内容是分析试卷。讲课前,张老师强调:“现在分数还没登记(教师的策略,使扣分成为可能,对学生具有压力),不许有声音!谁出声音就在原来的分数上扣10分。”张老师在讲解填空题
对于H0:μ1=μ2=…=μk样的一个虚无假设,我们设置的备择假设Hi是()
气机郁滞型呃逆的治疗当用
氨茶碱安全有效的血药浓度是
放射性颌骨骨髓炎,下列正确的说法为
期货交易所实施下列()行为,应当经过中国证监会的批准。
《中华人民共和国刑事诉讼法》第六条规定:“人民法院、人民检察院和公安机关进行刑事诉讼,必须依靠群众,必须以事实为根据,以法律为准绳。”依据法律规则的性质划分,这条规定属于:
人类学家发现早在旧石器时代,人类就有了死后复生的信念。在发掘出的那个时代的古墓中,死者的身边有衣服、饰物和武器等陪葬物,这是最早的关于人类具有死后复生信念的证据。以下哪项,是上述议论所假定的?
邓小平“建设有中国特色社会主义理论”的轮廓的构建完成。是在中国共产党的()
MarkTwain,whowrotethestorywe’regoingtoread,traveledquitealotoftenbecausecircumstamces,usually【B1】______circum
最新回复
(
0
)