首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设向量组试问(1)a为何值时,向量组线性无关?(2)a为何值时,向量组线性相关,此时求齐次线性方程组x1α1+x2α2+x3α3+x4α4=0的通解.
设向量组试问(1)a为何值时,向量组线性无关?(2)a为何值时,向量组线性相关,此时求齐次线性方程组x1α1+x2α2+x3α3+x4α4=0的通解.
admin
2016-01-11
69
问题
设向量组
试问(1)a为何值时,向量组线性无关?(2)a为何值时,向量组线性相关,此时求齐次线性方程组x
1
α
1
+x
2
α
2
+x
3
α
3
+x
4
α
4
=0的通解.
选项
答案
依题意有x
1
α
1
+x
2
α
2
+x
3
α
3
+x
4
α
4
=0.对方程组的系数矩阵A施以初等行变换,得[*] 显然,当a=0时,r(A)=1<4,故方程组有非零解,其同解方程组为x
1
+x
2
+x
3
+x
4
=0,此时,方程组的通解为[*]其中k
1
,k
2
,k
3
为任意常数.当a≠0时,由[*]显然,当a≠一10时,r(A)=4,故方程组仅有零解,从而α
1
,α
2
,α
3
,α
4
线性无关.当a=一10时,r(A)=3<4,此时方程有非零解,从而α
1
,α
2
,α
3
,α
4
线性相关.此时通解为[*]
解析
本题考查向量组线性相关性的定义,并注意到向量组α
1
,α
2
,α
3
,α
4
线性无关,其对应的齐次线性方程组x
1
α
1
+x
2
α
2
+x
3
α
3
+x
4
α
4
=0仅有零解;若向量组α
1
,α
2
,α
3
,α
4
线性相关,其对应的齐次线性方程组x
1
α
1
+x
2
α
2
+x
3
α
3
+x
4
α
4
=0有非零解.
转载请注明原文地址:https://jikaoti.com/ti/b4DRFFFM
0
考研数学二
相关试题推荐
设随机变量Xij(i,j=1,2,…,n;n≥2)独立同分布,E(Xij)=2,则行列式的数学期望E(Y)=_________.
设不恒为零的函数f(x)在[0,1]上有二阶连续导数,且f(0)=f(1)=0.记M={|f(x)|)}.证明:∫01[f(x)+x(1-x)f”(x)]dx=0.
设u(x,y)的全微分du=(x>0,y>0),u(x,y)有二阶连续偏导数,则()
设n维实列向量α满足αTα=2,A,B,E均为n阶矩阵,且A(E-2ααT)=B,则()
设幽数f(x,y)有二阶连续偏导数,且满足f”xx(x,y)=f”yy(x,y),f(x,2x)=x,f’x(x,2x)=x2,则f”xx(x,2x)=()
设f(x)在[0,1]上二阶可导,且f(0)=f(1),f”(x)>0,当x∈(0,1)时,下列结论正确的是()①(1-x)[f(x)-f(0)]<x[f(1)-f(x)].②(1-x)[f(x)-f(0)]>x[f(1)-f(x)
设矩阵满足CTAC=B.求a的值;
曲线x2-xy+y2=3上的点到原点的最大距离为()
设f(x)在[0,1]上有一阶连续导数,且f(0)=0,∫01xf(x)dx=0.证明:方程x[f(x)]2+f’(x)∫0xtf(t)dt=0在(0,1)内至少有两个不同的实根.
积分∫0π=________.
随机试题
四季豆中的毒性成分是________。
子宫肌瘤发生红色样变常见于
患者女,56岁,因“先天性心脏病、心房颤动、左侧肢体偏瘫”住院治疗。此脉搏属于()
期货市场上套期保值的效果主要是由()决定的。
某市科技开发公司2011年12月份取得技术开发收入120万元、与之相关的咨询收入20万元;另开发转让一专利技术并附样机一台,合同注明技术专利80万元,样机不含税价30万元,则下列说法正确的有()。
企业发行分期付息、一次还本债券时实际收到款项小于债券票面价值的差额采用实际利率法进行摊销,各期确认的实际利息费用会逐期增加。()
下列选项中属于控制小组进程技巧的是( )。
TheTheoryofContinentalDrifthashadalongandturbulenthistorysinceitwasfirstproposedbyAlfredWegenerin1910.(46)
RuiningtheRuinsAcidrain(酸雨)isnowafamiliarproblemintheindustrializedcountriesinEurope.Harmfulgasesareproduc
appear,competitive,corporate,corrupt,differ,ethics,interest,nation,present,sponsor,volunteer,co-workerAsurp
最新回复
(
0
)