首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设α为实n维非零列向量,αT表示α的转置.(1)证明:A=E一为对称的正交矩阵;(2)若α=(1,2,一2)T,试求出矩阵A;(3)若β为税维列向量,试证明:Aβ=β一(bc)α,其中,b、c为实常数.
设α为实n维非零列向量,αT表示α的转置.(1)证明:A=E一为对称的正交矩阵;(2)若α=(1,2,一2)T,试求出矩阵A;(3)若β为税维列向量,试证明:Aβ=β一(bc)α,其中,b、c为实常数.
admin
2016-04-11
70
问题
设α为实n维非零列向量,α
T
表示α的转置.(1)证明:A=E一
为对称的正交矩阵;(2)若α=(1,2,一2)
T
,试求出矩阵A;(3)若β为税维列向量,试证明:Aβ=β一(bc)α,其中,b、c为实常数.
选项
答案
记常数b=[*],则b>0,A=E一bαα
T
. (1)A
T
=(E一bαα
T
)
T
=E一baa
T
=A,所以A为对称矩阵.AA
T
=AA=(E一bαα
T
)(E—bαα
T
)=E一2bαα
T
+b
2
α(α
T
α)α
T
,而α
T
α=[*],代入上式得AA
T
=E,所以A为正交矩阵. (2)[*] (3)Aβ=(E一bαα
T
)β=β一bα(α
T
β)=β一b(α
T
β)α=β一(bc)α,其中常数c=α
T
β.
解析
转载请注明原文地址:https://jikaoti.com/ti/tAPRFFFM
0
考研数学一
相关试题推荐
设A为3阶实对称矩阵,存在可逆矩阵,使得P-1AP=diag(1,2,-1),A的伴随矩阵A*有特征值λ0,对应的特征向量为α=(2,5,-1)T。求a,b,λ0,的值;
设在(-∞,+∞)内连续曲线y=f(x)关于点(a,0)(a≠0)对称,则积分∫a+1a-1f(x)dx=________。
设f(x)在(-∞,+∞)内可导,且f(0)≤0,证明:存在ξ∈(ξ1,ξ2),使得f(ξ)+f’(ξ)=2020
已知存在且不为零,其充要条件是常数P=___________,此时该极限值为____________.
设A=,为A中aij(i,j=1,2,3)的代数余子式,二次型的矩阵为B求B
设f(x)=(0≤x≤π/2),则f(x)在(0,π/2)内不可导点的个数为
已知二次型f=2x12+3x22+332+2ax2x3(a>0)通过正交变换化成标准形f=y+2y+5y.求参数a及所用的正交变换矩阵.
设z=z(x,y)是由f(y-x,yz)=0确定的,其中f对各个变量有连续的二阶偏导数,求
已知函数f(x)在[0,3π/2]上连续,在(0,3π/2)内是函数的一个原函数,f(0)=0.(I)求f(x)在区间[0,3π/2]上的平均值;(Ⅱ)证明f(x)在区间(0,3π/2)内存在唯一零点.
商店收进甲厂生产的产品30箱,乙厂生产的同种产品20箱,甲厂产品每箱装100个,废品率为0.06,乙厂产品每箱120个,废品率为0.05.任取一箱,从中任取一个产品,求其为废品的概率
随机试题
患者,男,67岁。既往高血压20多年,不规则治疗,近来症状加重,头昏、心悸,测血压165/104mmHg,临床申请超声心动图检查。问题1:不可能出现的超声表现是
关于工程咨询单位资格认定时限的表述,正确的有()。
甲、乙签订货物买卖合同,约定由甲代办托运。甲遂与丙签订运输合同,合同中载明乙为收货人。运输途中,因丙的驾驶员丁的重大过失发生交通事故,致使货物受损,无法向乙按约交货。根据合同法律制度的规定,下列表述中正确的是()。
下列有关保险的说法中错误的有()
旅行社设立的,为旅行社招徕旅游者,并以旅行社的名义与旅游者签订旅游合同的门市部等机构是()。
儿童个性形成的开始时期是()。
不仅是知觉,任何其他一个心理活动和心理现象,从认知到情绪情感以至个性都离不开记忆的参与。记忆将人的心理活动的过去、现在和未来联成一个整体,使心理发展、知识积累和个性形成得以实现。这段话的中心意思是()。
(四川2008—1)
Whichofthefollowingwouldbethebesttitleforthetext?Theword"connoisseurs"(Paragraph1)mostprobablymeans
—IwonderifIcouldpossiblyuseyourcarfortonight?—______.I’mnotusingitanyhow.
最新回复
(
0
)