首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设X1和X2任意两个相互独立的连续型随机变量,它们的概率密度分别为f1(x)和f2(x),分布函数分别为F1(x)和F2(x),则( ).
设X1和X2任意两个相互独立的连续型随机变量,它们的概率密度分别为f1(x)和f2(x),分布函数分别为F1(x)和F2(x),则( ).
admin
2020-05-19
29
问题
设X
1
和X
2
任意两个相互独立的连续型随机变量,它们的概率密度分别为f
1
(x)和f
2
(x),分布函数分别为F
1
(x)和F
2
(x),则( ).
选项
A、f
1
(x)+f
2
(x)必为某一随机变量的概率密度
B、f
1
(x)f
2
(x)必为某一随机变量的概率密度
C、F
1
(x)+F
2
(x)必为某一随机变量的分布函数
D、F
1
(x)F
2
(x)必为某一随机变量的分布函数
答案
D
解析
首先可否定选项(A)与(C),因
F
1
(+∞)+F
2
(+∞)=1+1=2≠1.
对于选项(B),若f
1
(x)=
则对任何x∈(-∞,+∞),f
1
(x)f
2
(x)≡0,∫
-∞
+∞
f
1
(x)f
2
(x)=0≠1,因此也应否定(C),综上分析,用排除法应选(D).
进一步分析可知,若令X=max(X
1
,X
2
),而X
i
~f
i
(x),i=1,2,
则X的分布函数F(x)恰是F
1
(x)F
2
(x).
F(x)=P{max(X
1
,X
2
)≤x}=P{X
1
≤x,X
2
≤x}=P{X
1
≤x}P{X
2
≤x}=F
1
(x)F
2
(x).故应选(D).
转载请注明原文地址:https://jikaoti.com/ti/sW9RFFFM
0
考研数学一
相关试题推荐
设α=(1,2,3)T,β=(1,,0)T,A=αβT,则A3=_________.
设yn=,求极限yn.
设Ω:x2+y2+z2≤1,证明:
设4维向量组α1=(1+a,1,1,1)T,α2=(2,2+a,2,2)T,α3=(3,3,3+a,3)T,α4=(4,4,4,4+a)T,问a为何值时,α1,α2,α3,α4线性相关。当α1,α2,α3,α4线性相关时,求其一个极大线性无关组,并将其余向
设函数y1(x),y2(x),y3(x)线性无关,而且都是非齐次线性方程y"+p(x)y’+q(x)y=f(x)(6.2)的解,C1,C2为任意常数,则该非齐次方程的通解是
设函数f(x)任点x=a处可导,则函数丨f(x)丨在点x=a处不可导的允分条件是
设y=y(x)是二阶线性常系数非齐次微分方程y"+Py’+Qy=3e2x满足初始条件y(0)=y’(0)=0的特解,则极限=()
设f(x)在点x=x0处可导,且f(x0)=0,则f’(x0)=0是|f(x)|在x0可导的()条件.
设函数f(x)=则在点x=0处f(x)().
已知随机变量X的概率密度为f(χ)=Aeχ(B-χ)(-∞<χ<+∞),且有EX=2DX,试求:(Ⅰ)常数A,B的值;(Ⅱ)E(X2+eχ);(Ⅲ)Y=的分布函数F(y).
随机试题
高速公路上行车,如果因疏忽驶过出口,应________。
A、蝶骨B、颞骨C、筛骨D、枕骨E、额骨圆孔、卵圆孔所属的骨是()
滤过分数是指
酶诱导作用和酶抑制作用可影响药物的
与流行性脑脊髓膜炎患者密切接触后的重要预防措施是
在双缝干涉实验中,屏幕上的P点是明条纹,若将缝S2盖住,并在S1、S2连线的垂直平分面处放一反射镜M,如图所示,则此时()。
消防水泵接合器的检查方法和技术要求包括()。
2017年6月1日,美国总统特朗普在白宫宣布,美国将退出()。
150万封电邮和接近9万个电话呼叫通通指向美国国会,网友在Google和Facebook上怨声载道,甚至有几千封手写书信飞至美国众议院,这就是所谓的“数字暴乱”。这场网络怨愤借助于11月16日“美国审查日”之名发起,目的是为了反对提案《禁止网络盗版法案》。
小王参加公务员录用考试被某机关录用,在试用期内因违反公务员纪律被取消录用,小王不服,他可以采取的正确做法是:( )
最新回复
(
0
)