首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设向量组α1,α2,…,αn-1为n维线性无关的列向量组,且与非零向量β1,β2正交.证明:β1,β2线性相关.
设向量组α1,α2,…,αn-1为n维线性无关的列向量组,且与非零向量β1,β2正交.证明:β1,β2线性相关.
admin
2017-08-31
31
问题
设向量组α
1
,α
2
,…,α
n-1
为n维线性无关的列向量组,且与非零向量β
1
,β
2
正交.证明:β
1
,β
2
线性相关.
选项
答案
令A=[*],因为α
1
,α
2
,…,α
n-1
与β
1
,β
2
正交,所以Aβ
1
=0,Aβ
2
=0,即β
1
,β
2
为方程组AX=0的两个非零解,因为r(A)=n—1,所以方程组AX=0的基础解系含有一个线性无关的解向量,所以β
1
,β
2
线性相关.
解析
转载请注明原文地址:https://jikaoti.com/ti/sBVRFFFM
0
考研数学一
相关试题推荐
(I)设[*5问a,b为何值时,β1,β2能同时由α1,α2,α3线性表出.若能表出时,写出其表出式;(Ⅱ)设问a,b为何值时,矩阵方程AX=B;有解,有解时,求出其全部解.
设l为圆周一周,则空间第一型曲线积分x2ds=_________.
设u=f(x2+y2,xz),z=z(x,y)由ex+ey=ez确定,其中f二阶连续可偏导,求:
设f(x)为[-a,a]上的连续的偶函数且f(x)>0,令F(x)=∫-aa|x-t|f(t)dt.(Ⅰ)证明:F’(x)单调增加.(Ⅱ)当x取何值时,F(x)取最小值?(Ⅲ)当F(x)的最小值为f(a)一a2一1时,求函数f(x).
设f(x,y)在点(0,0)处连续,且,其中a,b,c为常数.(Ⅰ)求f(0,0)的值.(Ⅱ)证明f(x,y)在点(0,0)处可微,并求出df(x,y)|(0,0).(Ⅲ)讨论f(x,Y)在点(0,0)处是否取极值,说明理由.
设且B=P-1AP.(Ⅰ)求矩阵A的特征值与特征向量;(Ⅱ)当时,求矩阵B;(Ⅲ)求A100.
设S为平面x一2y+z=1位于第四卦限的部分,则
求{}的最大项.
(x-3sin3x+ax-2+b)=0,试确定常数a,b的值.
设(x-3sin3x+ax-2+b)=0,求a,b的值.
随机试题
A.辐散式联系B.聚合式联系C.单线式联系D.环式联系E.交互式联系能在空间上扩大作用范围的中枢神经元联系方式是
药品广告须经
甲公司与乙公司发生合同纠纷,诉至法院。法院判决甲公司赔偿乙公司经济损失15万元。但在生效判决强制执行完毕后不久,甲公司提出甲公司与乙公司之间的合同是无效合同。下列说法错误的有哪些?
某地中级人民法院审理的一起专利侵权纠纷,涉及甲乙丙丁四个人的行为。请问下列哪一行为不构成专利侵权?()
银行业从业人员的下列行为中,不符合“熟知业务”操守规定的是()。
某男,45岁,外企工作。因焦虑不安求助。求助者在外企某办事处为负责人,已十余年,薪水较高。妻子是中学教师,夫妻感情好,女儿读高中,学习优异。近一年来,生意难做,自己虽努力工作,美国老板似有不满之意,为此忧心忡忡。开始担心运货物的船只会不会沉没,有时
石油:汽油
一位海关检查员认为,他在特殊工作经历中培养了一种特殊的技能,即能够准确地判定一个人是否在欺骗他。他的根据是,在海关通道执行公务时,短短的几句对话就能使他确定对方是否可疑;而在他认为可疑的人身上,无一例外地都查出了违禁物品。以下哪项如果为真,能削弱
—Mr.Smith,youarearrestedforstealing.Pleasesignhere.—Arrested?Stealing?______.
SecretsofStrongFamiliesAgroupofAmericanmarriageandfamilycounselorsonceplacedabriefnoticeinfourdozennewsp
最新回复
(
0
)