首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x,y)在点(0,0)处连续,且,其中a,b,c为常数. (Ⅰ)求f(0,0)的值. (Ⅱ)证明f(x,y)在点(0,0)处可微,并求出df(x,y)|(0,0). (Ⅲ)讨论f(x,Y)在点(0,0)处是否取极值,说明理由.
设f(x,y)在点(0,0)处连续,且,其中a,b,c为常数. (Ⅰ)求f(0,0)的值. (Ⅱ)证明f(x,y)在点(0,0)处可微,并求出df(x,y)|(0,0). (Ⅲ)讨论f(x,Y)在点(0,0)处是否取极值,说明理由.
admin
2015-05-07
43
问题
设f(x,y)在点(0,0)处连续,且
,其中a,b,c为常数.
(Ⅰ)求f(0,0)的值.
(Ⅱ)证明f(x,y)在点(0,0)处可微,并求出df(x,y)|
(0,0)
.
(Ⅲ)讨论f(x,Y)在点(0,0)处是否取极值,说明理由.
选项
答案
(Ⅰ)当(x,y)→(0,0)时ln(1+x
2
+y
2
)~x
2
+y
2
,由求极限中等价无穷小因子替换得 [*] 又由f(x,y)在点(0.0)处的连续性即得f(0.0)=[*]=a. (Ⅱ)再由极限与无穷小的关系可知 [*]=1+o(1)(o(1)为当(x,y)→(0,0)时的无穷小量)[*]f(x,y)-f(0,0)-bx-cy=x
2
+y
2
+(x
2
+y
2
)o(1)=o(ρ)(ρ=[*]→0), 即 f(x,y)-f(0,0)=bx+cy+o(ρ) (ρ→0). 由可微性概念[*] f(x,y)在点(0,0)处可微且df(x,y)|
(0,0)
=bdx+cdy. (Ⅲ)由df(x,y)|
(0,0)
=bdx+cdy[*] 于是当b,C不同时为零时f(x,y)在点(0,0)处不取极值. 当b=c=0时,由于 [*] 又由极限不等式性质[*]δ>0,当0<x
2
+y
2
<δ
2
时,[*]>0,即f(x,y)>f(0,0). 因此f(x,y)在点(0,0)处取极小值.
解析
转载请注明原文地址:https://jikaoti.com/ti/NpcRFFFM
0
考研数学一
相关试题推荐
设n阶实对称矩阵A满足A4+6A3+9A2-6A-10E=O,求Ak,k为任意正整数.
设A是3阶矩阵,λ1=1,λ2=2,λ3=3是A的特征值,对应的特征向量分别是ξ1=[2,2,-1]T,ξ2=[-1,2,2]T,ξ3=[2,-1,2]T.又β=[1,2,3]T.计算;Anξ1;
已知ξ1,ξ2是方程(λE-A)x=0的两个不同的解向量,则下列向量中必是A的对应于特征值λ的特征向量的是().
已知3阶矩阵A满足|A-E|=|A-2E|=|A+E|=a,其中E为3阶单位矩阵.当a=0时,求行列式|A+3E|的值;
、问λ为何值时,方程组无解,有唯一解,有无穷多解?并在有无穷多解时写出方程组的通解.
设函数f(x,y)连续,则∫12dy∫1yf(x,y)dx+∫12dy∫y4—yf(x,y)dx=().
若曲线y=x2+ax+b和2y=-1+xy3在点(1,-1)处相切,其中a,b是常数,则().
设x的概率密度为f(x)=,F(x)是x的分布函数,求Y=F(x)的分布函数和概率密度。
Y服从参数X的指数分布,而X是服从[1,2]上的均匀分布的随机变量.求已知Y=y时X的条件密度函数;
计算I=∮Lx2yzdx+(x2+y2)dy+(x+y+1)dz,其中L为球面x2+y2+z2=5与旋转曲面z=1+x2+y2的交线,从z轴负向看为逆时针方向.
随机试题
在企业采用抽样调查的调研方法时,随着样本数量的增多,研究结果的误差会越来越大,企业需要投入的费用和时间也会增多。()
HaveyoueverhadtodecidewhethertogoshoppingorstayhomeandwatchTVonaweekend?Nowyou【C1】______dobothatthesame
红细胞直径>15um常见于
某分部工程双代号网络图如下图所示,总工期为16天。如果工作③一⑤拖延6天开始,则总工期将延长()天。
造成损失的直接原因或外在原因是()。
企业集团(由母公司和其子公司构成)内发生的股份支付交易,如结算企业是接受服务企业的投资者,应当按照授予日权益工具的公允价值或应承担负债的公允价值确认为对接受服务企业的长期股权投资,同时确认资本公积(其他资本公积)或负债。()
下面提供的残疾人服务,属于改善残疾人生活质量的是()。
小红为了获得老师和家长的表扬,学习非常刻苦。她的学习动机是()
Bysaying"thefact...challengesexplanation",theauthormeansthat______.Whichofthefollowingistrueaccordingtothet
A、Sheknowsnothingaboutthetenniscourts.B、Shedoesnothaveagoodsenseofdistance.C、Sheisalsoastrangertotheunive
最新回复
(
0
)