设f(2)=1/2,f’(2)=0,∫02f(x)dx=1,求∫01x2f"(2x)dx.

admin2021-10-18  11

问题 设f(2)=1/2,f’(2)=0,∫02f(x)dx=1,求∫01x2f"(2x)dx.

选项

答案01x2f"(2x)dx-1/8∫01(2x)2f"(2x)d(2x)=1/8∫02x2f"(x)dx=1/8∫02x2d[f’(x)]=1/8[x2f’(x)|02-2∫02xf’(x)dx]=1/4∫02xdf(x)=-1/4[xf(x)|02-∫02f(x)dx]=-1/4[2f(2)-1]=0.

解析
转载请注明原文地址:https://jikaoti.com/ti/rDlRFFFM
0

随机试题
最新回复(0)