首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
“|f(x)|在x=a处可导”是“f(x)在x=a处可导”的 ( )
“|f(x)|在x=a处可导”是“f(x)在x=a处可导”的 ( )
admin
2018-12-21
30
问题
“|f(x)|在x=a处可导”是“f(x)在x=a处可导”的 ( )
选项
A、充分条件而非必要条件.
B、必要条件而非充分条件.
C、既非充分又非必要条件.
D、充分必要条件.
答案
C
解析
举反例说明既非充分又非必要条件.例如设
|f(x)|=1在x=a处可导,但f(x)在x=a处不连续,不可导.又如,设f(x)=x-a,在x=a处f(x)可导,f
’
(x)=1.但|f(x)|=|x-a|在x=a处形成尖点,|f(x)|在x=a处不可导.
转载请注明原文地址:https://jikaoti.com/ti/oAWRFFFM
0
考研数学二
相关试题推荐
(2007年)设3阶实对称矩阵A的特征值λ1=1,λ2=2,λ3=-2,且α1=(1,-1,1)T是A的属于λ1的一个特征向量.记B=A5=4A3+E,其中E为3阶单位矩阵.(Ⅰ)验证α是矩阵B的特征向量,并求B的全部特征值与特征向量;
(2009年)若f〞(χ)不变号,且曲线y=f(χ)在点(1,1)处的曲率圆为χ2+y2=2,则函数f(χ)在区间(1,2)内【】
(2013年)设奇函数f(χ)在[-1,1]上具有2阶导数,且f(1)=1.证明:(Ⅰ)存在ξ∈(0,1),使得f′(ξ)=1;(Ⅱ)存在η∈(-1,1),使得f〞(η)+f′(η)=1.
(2006年)证明:当0<a<b<π时,bsinb+2cosb+π6>asina+2cosa+πa.
(2013年)曲线对应于t=1的点处的法线方程为_______.
(1987年)求(a,b是不全为零的非负常数).
(1993年)设二阶常系数线性微分方程y〞+αy′+βy=γeχ的一个特解为y=e2χ+(1+χ)eχ,试确定常数α、β、γ,并求该方程的通解.
(1991年)曲线y=的上凸区间是=_______.
已知四元二个方程的齐次线性方程组的通解为X=k1[1,0,2,3]T+k2[0,1,一l,1]T,求原方程组.
设向量组α1=[α11,α21,…,αn1]T,α2=[α12,α22,…,αn2]T,…,αs=[α1s,α2s,…,αns]T,证明:向量组α1,α2,…,αs线性相关(线性无关)的充要条件是齐次线性方程组有非零解(有唯一零解).
随机试题
属于单核一吞噬细胞系统的细胞是()
某孕妇,孕前基础血压为100/60mmHg。宫内孕28周时出现水肿,34周查:BP150/110mmHg,水肿达脚踝部,24小时尿蛋白定量4.5g,无头痛、眼花等自觉症状。最可能的诊断是
气管切开的部位多在
驱虫药中,含有毒性的药物是
售出的产品有下列情形之一的,销售者应当负责修理、更换、退货;给购买产品的消费者造成损失的,销售者应当赔偿损失( )。
由两家或两家以上银行基于相同贷款条件,依据同一贷款协议,按约定时间和比例,通过代理行向借款人提供的本外币贷款或授信业务是()。
阅读文字材料。按要求回答36-40题。教育的任务就是唤醒人的潜力或潜在本质,使其内部产生一种自动力,最大限度地使其内部灵活性与可能性得到最佳发展。教育实质上是人的灵魂的教育,而不仅仅是知识和认识的积累,而灵魂的成长成熟是没人可以代劳的。按本性说,人
中国人民政治协商会议
在曲线x=t,y=-t2,z=t3的所有切线中,与平面x+2y+z=4平行的切线().
The20thcenturymayhavebeentheageofscientificadvancementbut,asthenewmillenniumbegins,(1)_____worldhealththepr
最新回复
(
0
)