已知n(n≥4)维向量组(Ⅰ)α1,α2线性无关,(II)β1,β2线性无关,且α1,α2分别与β1,β2正交,证明:α1,α2,β1,β2线性无关.

admin2019-02-26  18

问题 已知n(n≥4)维向量组(Ⅰ)α1,α2线性无关,(II)β1,β2线性无关,且α1,α2分别与β1,β2正交,证明:α1,α2,β1,β2线性无关.

选项

答案考察 k1α1+k2α21β12β2=0. 两边分别对α1,α2作内积,由于(α1,β1)=0,(α1,β2)=0,(α2,β1)=0,(α2,β2)=0, 故得齐次方程组 [*] 由于方程组的系数行列式为 [*] =(α1,α1)(α2,α2)-(α1,α2)2, 根据柯西一施瓦兹不等式,当α1,α2线性无关时,有(α1,α2)2<(α1,α1)(α2,α2),故方程 组的系数行列式大于零(不等于零),方程组有唯一零解k1=k2=0,代入原式得 λ1β12β2=0. 由β1,β2线性无关,故λ12=0,从而k1=k212=0,故α1,α2,β1,β2线性无关.

解析
转载请注明原文地址:https://jikaoti.com/ti/nmoRFFFM
0

最新回复(0)