首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设区域D为:由以(0,0),(1,1),(0,1/2),(1/2,1)为顶点的四边形与以(1/2,0),(1,0),(1,1/2)为顶点的三角形合成.而(X,Y)在D上服从均匀分布,求关于X和Y的边缘密度fX(x)和fY(y)。
设区域D为:由以(0,0),(1,1),(0,1/2),(1/2,1)为顶点的四边形与以(1/2,0),(1,0),(1,1/2)为顶点的三角形合成.而(X,Y)在D上服从均匀分布,求关于X和Y的边缘密度fX(x)和fY(y)。
admin
2016-04-11
28
问题
设区域D为:由以(0,0),(1,1),(0,1/2),(1/2,1)为顶点的四边形与以(1/2,0),(1,0),(1,1/2)为顶点的三角形合成.而(X,Y)在D上服从均匀分布,求关于X和Y的边缘密度f
X
(x)和f
Y
(y)。
选项
答案
[*] 易算得D
1
的面积为3/8,D
2
的面积为1/8,故D的面积为1/2, ∴(X,Y)的概率章密度为 [*] ∴f
X
(x)=∫
-∞
+∞
y(x,y)dy 当x≤0或x≥1时,f
X
(x)=0 [*] 而f
Y
(y)=∫
-∞
+∞
f(x,y)dx. 当y≤0或y≥1时,f
Y
(y)=0; [*]
解析
转载请注明原文地址:https://jikaoti.com/ti/nEPRFFFM
0
考研数学一
相关试题推荐
[*]先画出积分区域,如下图阴影部分所示.然后调换积分次序(先对y后对x)计算.这是因为被积函数为直接对x积分是无法求出结果的.解交换积分次序(先对y后对x)计算,得到:
设D为由y=,与y=1-所围区域,计算I=dxdy
设面密度为1的立体Ω由不等式≤z≤1表示,求Ω对直线L:x=y=z的转动惯量.
设半径为R的球体上,任意一点P处的密度为,其中P0为定点,且与球心的距离r0大于R,则该物体的质量为________.
设函数f(u)可导,y=f(sinx)当自变量x在x=π/6处取得增量△x=,相应的函数增量△y,的线性主部为1,则f’(1/2)=().
一根长度为1的细棒位于x轴的区间[0,1]上,若其线密度ρ(x)=-x2+2x+1,则该细棒的质心横坐标=________.
离散型随机变量X的概率分布为(1)P{X=i}=a2i,i=1,2,…,100;(2)P{X=i}=2ai,i=1,2,…,分别求(1)、(2)中a的值.
甲、乙两人分别拥有赌本30元和20元,他们利用投掷一枚均匀硬币进行赌博,约定如果出现正面,甲赢10元、乙10元.如果出现反面,则甲输10元、乙赢10元,分别用随机变量表示投掷一次后甲、乙两人的赌本,并求其概率分布和分布函数,画出分布函数的图形.
设非负连续型随机变量X服从指数分布,证明对任意实数r和S,有P{X>r+s|X>s}=P{X>r}.
甲袋中有2个白球,乙袋中有2个黑球,每次从各袋中任取一球交换后放人另一袋中,共交换3次,用X表示3次交换后甲袋中的白球数,求X的概率分布.
随机试题
痰火凝结之瘿瘤、瘰疬选用的最佳药物是
一养殖户,饲养了8头奶牛,一天其中一头奶牛由于从架栏中脱逃,偷吃了刚配制好的全部牛的一餐精料,随后发病。最大可能的疾病是()。
下列关于硝酸甘油的不良反应的叙述,错误的是
在糖酵解途径中,下列哪些反应是可逆的()
下列关于可行域的描述,说法正确的是()。
以下关于导游证的说法中,正确的是()
共产主义社会,将是物质财富极大丰富,人民精神境界极大提高,每个人自由而全面发展的社会,需要千百万人一代又一代不懈的努力来实现。共产主义是
Twomodesofargumentationhavebeenusedonbehalfofwomen’semancipationinWesternsocieties.Argumentsinwhatcouldbecal
ThespeakercomparestheInternetto______.
Manydoctorsknowthestoryof’MrWright’.In1957hewasdiagnosedwithcancer,andgivenonlydaystolive.Hehadtumourst
最新回复
(
0
)