设直线L过A(1,0,0),B(0,1,1)两点,将L绕z轴旋转一周得到曲面Σ,Σ与平面z=0,z=2所围成的立体为Ω。 求曲面Σ的方程。

admin2018-12-29  27

问题 设直线L过A(1,0,0),B(0,1,1)两点,将L绕z轴旋转一周得到曲面Σ,Σ与平面z=0,z=2所围成的立体为Ω。
求曲面Σ的方程。

选项

答案由已知得[*]={—1,1,1},则L:[*],设任意点M(x,y,z)∈Σ ,对应于L上的M0(x0,y0,z),则有x2+y2=x02+y02。 且由[*] 得Σ :x2+y2=(1—z)2+z2,即∑:x2+y2=2z2—2z+1。

解析
转载请注明原文地址:https://jikaoti.com/ti/mB1RFFFM
0

最新回复(0)