首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设 讨论它们在点(0,0)处的①偏导数的存在性;②函数的连续性;③函数的可微性.
设 讨论它们在点(0,0)处的①偏导数的存在性;②函数的连续性;③函数的可微性.
admin
2018-08-23
47
问题
设
讨论它们在点(0,0)处的①偏导数的存在性;②函数的连续性;③函数的可微性.
选项
答案
对f(x,y)作如下讨论. ①按定义易知f’
x
(0,0)=0,f’
y
(0,0)=0,故在点(0,0)处偏导数存在. ②[*]所以f(x,y)在点(0,0)处连续. ③[*]按可微定义,若可微,则 [*] 即应有 [*] 但上式并不成立(例如取△y=k△x,上式左边为[*]故不可微. 对g(x,y)作如下讨论.以下直接证明③成立,由此可推知①,②均成立.事实上, [*] 所以 [*] 按可微的定义知,g(x,y)在点(0,0)处可微.
解析
转载请注明原文地址:https://jikaoti.com/ti/lBWRFFFM
0
考研数学二
相关试题推荐
设A为n阶实对称矩阵,r(A)=n,Aij是A=(aij)n×m中元素aij的代数余子式(i,j=1,2,…,n),二次型记x=(x1,x2,……xn)T,把f(x1,x2,……xn)写成矩阵形式,并证明二次型f(x)的矩阵为A一1;
设E为3阶单位矩阵.求线性方程组Ax=0的一个基础解系;
已知下列非齐次线性方程组(I),(Ⅱ):当方程组(Ⅱ)中的参数m,n,t为何值时,方程组(I)与(Ⅱ)同解.
设n阶实矩阵A为反对称矩阵,即AT=一A.证明:对任意一个n维实列向量α,α与Aα正交;
设函数f(x)在区间[0,+∞)上连续且单调增加,证明g(x)=在[0,+∞)上也单调增加.
设函数f(x)在开区间(a,b)内可导,证明:当导函数f’(x)在(a,b)内有界时,函数f(x)在(a,b)内也有界.
设(X,Y)在区域D={(x,y)|1≤x≤3,1≤y≤3}上服从均匀分布,事件A={X≤a},B={Y>a}.(1)若P(A∪B)=,求a;(2)设D0为事件A∪B所占的区域,随机地向D投点4次,Z为落入D0内的次数,求E(Z2).
已知函数z=f(x,y)的全微分dz=2xdx一2ydy,并且f(1,1)=2.求f(x,y)在椭圆域上的最大值和最小值.
(2014年)已知函数f(χ,y)满足=2(y+1),且f(y,y)=(y+1)2-(2-y)lny,求曲线f(χ,y)=0所围图形绕直线y=-1旋转所成旋转体的体积.
(1990年)过P(1,0)作抛物线y=的切线,该切线与上述抛物线及χ轴围成一平面图形.求此平面图形绕χ轴旋转一周所成旋转体的体积.
随机试题
下列活动不适用《证券法》的是:()
病毒性肝炎的临床表现是()。
自动转账凭证与模式凭证主要是为了提高凭证录入的效率。()
在销售量水平一定的条件下,盈亏临界点的销售量越小,说明企业的()。
对于一个经历过贫困童年的富翁来说,他的消费行为有时显得__________。对于大金额的支出,他会随随便便,甚至显得有些铺张浪费;而对于小金额的支出,他则不得不与自己__________的吝啬性做斗争。填入画横线部分最恰当的一项是()。
Atthebeginningofthetour,we’llstartwithmostimportantplace【M1】______ofmytown,whichisthePlazaLeon.ThePlazaLe
WhydideverybodyinthevillagethinkMarkwoulddie?
Ihopeyoudon’tmindme______yousir,butistheremuchmoneyinvolvedinthewill?
Ifthere’soneman_______opinionmattersmorethananyothers’,it’sourmanager.
Forthispart,youareallowed30minutestowritealetterofapplication.Youshouldwriteitatleast120wordsbutnomoret
最新回复
(
0
)