首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A为三阶实对称矩阵,且存在正交矩阵Q=,使得QTAQ=,又令B=A2+2E,求矩阵B.
设A为三阶实对称矩阵,且存在正交矩阵Q=,使得QTAQ=,又令B=A2+2E,求矩阵B.
admin
2021-01-14
36
问题
设A为三阶实对称矩阵,且存在正交矩阵Q=
,使得Q
T
AQ=
,又令B=A
2
+2E,求矩阵B.
选项
答案
由Q
T
AQ=[*] 得A的特征值为λ
1
=2,λ
2
=一1,λ
3
=1,且λ
1
=2对应的特征向量为ξ
1
=[*] 由A
T
=A得B
T
=(A
2
+2E)
T
=(A
2
)
T
+2E=A
T
+2E=B,即B为实对称矩阵. 显然B的特征值为λ
1
=6,λ
2
=λ
3
=3,且B相应于特征值λ
1
=6的特征向量为ξ
1
=[*] 设B的相应于λ
2
=λ
3
=3的特征向量为ξ=[*] 因为实对称矩阵不同特征值对应的特征向量正交,所以ξ
1
T
=0,即x
1
+x
2
+x
3
=0, 于是B的相应于特征值λ
2
=λ
3
=3的线性无关的特征向量为ξ
2
=[*] [*]
解析
转载请注明原文地址:https://jikaoti.com/ti/kaARFFFM
0
考研数学二
相关试题推荐
[*]
(00年)求函数f(x)=x2ln(1+x)在x=0处的n阶导数f(n)(0)(n≥3).
(2008年试题,21)求函数u=x2+y2+z2在约束条件z=x2+y2和x+y+z=4下的最大值和最小值.
(2003年试题,三)设函数问a为何值时f(x)在x=0处连续;a为何值时,x=0是f(x)的可去间断点?
[2012年]已知函数f(x)=,记a=f(x).求a的值;
(Ⅰ)证明方程xn+xn一1+…+x=1(n为大于1的整数)在区间(,1)内有且仅有一个实根;(Ⅱ)记(Ⅰ)中的实根为xn,证明xn存在,并求此极限.
设函数y=y(x)在(一∞,+∞)内具有二阶导数,且y’≠0,x=x(y)是y=y(x)的反函数。求变换后的微分方程满足初始条件y(0)=0,y’(0)=的特解。
已知函数f(x)满足方程f’’(x)+f’(x)一2f(x)=0及f’’(x)+f(x)=2ex。求f(x)的表达式;
设向量组α1=(a,0,10)T,α2=(一2,1,5)T,α3=(一1,1,4)T,β=(1,b,c)T,试问:当a,b,c满足什么条件时,回答下列问题:β可由α1,α2,α3线性表出,但表示不唯一,求出一般表达式。
设A,B为三阶矩阵,且特征值均为-2,1,1,以下命题:(1)A~B;(2)A,B合同;(3)A,B等价;(4)|A|=|B|中正确的命题个数为().
随机试题
一般认为,西方最早建立专门的保险监督管理制度的国家是
A、全身散在斑丘疹B、感染性休克,惊厥,呼吸衰竭C、发热、结膜炎D、发热、咽峡炎、草莓舌、全身弥漫性鲜红色皮疹E、睡眠不安、磨牙、肛周皮肤瘙痒上述哪项为水痘的临床特点
水利水电工程永久性水工建筑物的级别应该根据建筑物所在工程的等别,以及建筑物的重要性而确定,共可分为()。
对于不设窗间墙的玻璃幕墙,可采取在每层楼板外沿设置高度不低于()m的不燃性实体墙或防火玻璃墙的防火措施。
证券公司应当缴纳证券投资者保护基金,对于不从事证券经纪业务的证券公司,应在每年后30个工作日内按该年事先核定的比例预缴;并在审计结束后,确定年度需要缴纳的基金金额并及时向基金公司申报清缴。()
领导者的主要任务是提供必要的支持以帮助下属达到他们的目标,并确保他们的目标与群体和组织的目标相互配合、协调一致的是()。
酒精本身没有明显的致癌能力。但是许多流行病学调查发现,喝酒与多种癌症的发生风险正相关——也就是说,喝酒的人群中,多种癌症的发病率升高了。以下哪项如果为真,最能支持上述发现?()
下列程序的功能是:将数据1,2,…,8写入顺序文件Num.txt中,请补充完整。PrivateSubForm_Click()DimiAsIntegerOpen"Num.txt"ForOutputAs#1Fori=1To8_
下面不属于软件需求分析阶段主要工作的是
设栈的顺序存储空间为S(1:m),初始状态为top=m+1。现经过一系列入栈与退栈运算后,top=20,则当前栈中的元素个数为()。
最新回复
(
0
)