首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设∑为由直线绕x轴旋转产生的曲面,则∑上点P=(-1,1,-2)处的法线方程为( )
设∑为由直线绕x轴旋转产生的曲面,则∑上点P=(-1,1,-2)处的法线方程为( )
admin
2016-03-18
33
问题
设∑为由直线
绕x轴旋转产生的曲面,则∑上点P=(-1,1,-2)处的法线方程为( )
选项
A、
B、
C、
D、
答案
D
解析
设M(x,y,z)为曲面∑上的任意一点,过M点且垂直于z轴的圆交直线于点M
0
(x,y
0
,z
0
),圆心为T(x,0,0),由|MT|=|M
0
T|得y
2
+z
2
=y
2
2
+z
2
2
因为
所以y
0
=-x,z
0
=2x,故曲面∑的方程为5x
2
-y
2
-z
2
=0
曲面∑上点P(-1,1,-2)处的法向量为
n={10x,-2y,-2z)
p
={-10,-2,4},
转载请注明原文地址:https://jikaoti.com/ti/jzPRFFFM
0
考研数学一
相关试题推荐
累次积分等于()。
设α是n维单位列向量,A=E-ααT,证明:r(A)<n.
设A为n阶非奇异矩阵,α是n维列向量,b为常数,.计算PQ.
设(ay-2xy2)dx+(bx2y+4x+3)dy为某个二元函数的全微分,则a=________,b=________.
设有三个线性无关的特征向量,则a=________.
二阶常系数非齐次线性微分方程y"-2y’-3y=(2x+1)e-x的特解形式为().
设A,B,C,D都是n阶矩阵,r(CA+DB)=n.设ξ1,ξ2,ξ3,…,ξr与η1,η2,η3,…,ηs分别为方程组AX=0与BX=0的基础解系,证明:ξ1,ξ2,ξ3,…,ξr与η1,η2,η3,…,ηs线性无关。
微分方程y"-y=ex+1的一个特解应具有形式(式中a,b为常数)().
因为总体X在区间(0,0)内服从均匀分布,[*]
设总体X的概率密度为其中θ为未知参数且大于零.X1,X2,…,Xn为来自总体X的简单随机样本.求θ的矩估计量;
随机试题
正确选定公文的主送机关的原因。公文的主送机关的类型。
下列对东亚市场的自然环境描述错误的是()
论述如何培养班集体。
风寒外束,肺气壅遏,咳喘者。宜选用外感风寒湿邪,上半身疼痛者。宜选用
根据《中华人民共和国仲裁法》第17条的规定,仲裁协议应具备的有效要件包括()
甲国派遣的使馆馆长在乙国的任期内负有不干涉乙国内政的义务,以下哪项可说明馆长违反了他的义务?()
在“插入表格”对话框中,单击“向导”按钮,则弹出______,可以引导用户一步步建立。
从人民中积聚智慧的过程,实际上就是充分发扬民主,广泛______民智、努力______民心、造就坚实民意基础的过程。填入划横线部分最恰当的一项是()。
TokyoDailyNews
陈欧想要出国工作,他经过多方收集信息发现:每年通过雅思考试出国的人数是通过托福考试出国的人数的两倍,因此,他得出:雅思考试更容易通过。下面哪项如果为真,最能加强陈欧的结论?
最新回复
(
0
)