首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设n维列向量组α1,α2,…,αm(m<n)线性无关,则n维列向量组β1,β2,…,βm线性无关的充分必要条件是( ).
设n维列向量组α1,α2,…,αm(m<n)线性无关,则n维列向量组β1,β2,…,βm线性无关的充分必要条件是( ).
admin
2019-02-23
28
问题
设n维列向量组α
1
,α
2
,…,α
m
(m<n)线性无关,则n维列向量组β
1
,β
2
,…,β
m
线性无关的充分必要条件是( ).
选项
A、向量组α
1
,α
2
,…,α
m
可由向量组β
1
,β
2
,…,β
m
线性表示
B、向量组β
1
,β
2
,…,β
m
可由向量组α
1
,α
2
,…,α
m
线性表示
C、向量组α
1
,α
2
,…,α
m
与向量组β
1
,β
2
,…,β
m
等价
D、矩阵A=(α
1
,α
2
,…,α
m
)与矩阵B=(β
1
,β
2
,…,β
m
)等价
答案
D
解析
因为α
1
,α
2
,…,α
m
线性无关,所以向量组α
1
,α
2
,…,α
m
的秩为m,向量组β
1
,β
2
,…,β
m
线性无关的充分必要条件是其秩为m,所以选(D).
转载请注明原文地址:https://jikaoti.com/ti/jkoRFFFM
0
考研数学一
相关试题推荐
假设二维随机变量(X,Y)在矩形G={(x,y)|0≤x≤2,0≤y≤1}上服从均匀分布,记(Ⅰ)求U和V的联合分布;(Ⅱ)求U和V的相关系数ρ.
设函数u=f(x,y,z)有连续偏导数,且z=z(x,y)由方程xex-yey=zez所确定,则du=_____.
设|A|=,那么行列式|A|所有元素的代数余子式之和为________.
设f(x)是连续函数,F(x)是f(x)的原函数,则().
交换二次积分的积分次序:=_________.
设函数f(x)具有二阶连续导数,且f(0)=0,f’(0)=-1,已知曲线积分∫L[xe2x-6f(x)]sinydx-[5f(x)-f’(x)]cosydy与路径无关,则f(x)=_____.
设n>1,n元齐次方程组AX=0的系数矩阵为(1)讨论a为什么数时AX=0有非零解?(2)在有非零解时求通解.
设在一个空间直角坐标系中,有3张平面的方程:P1:x+2y+3z=3;P2:2x一2y+2az=0;P3:x—ay+z=b.已知它们两两相交于3条互相平行的不同直线,求a,b应该满足的条件.
(2005年)设有三元方程xy—zlny+exz=1,根据隐函数存在定理,存在点(0,1,1)的一个邻域,在此邻域内该方程()
随机试题
简述供应链管理的目标。
URL
口服避孕药中,长效与短效主要取决于下列何种激素
急性坏死性龈炎的特征是
将以下6个句子重新排列,语序正确的是()。①1980年5月8日,第三届世界卫生组织大会庄严宣布,人类终于消灭了曾严重威胁人类健康和生命的天花②1798年,英国乡村医生琴纳在“人痘”的基础上发明了“牛痘”.这很快被公认为是人类防治
为了研究和预报空间天气灾变规律,_____或减轻灾害性空间天气可能给人类活动带来的灾害和损失,一门把空间天气的监测、研究、模式、预报、效应、信息传输与处理以及对人类活动的影响加以综合与集成的新学科_____。依次填入以上段落中两个画横线处的词语,
1999年11月,美国国会通过(),允许金融持股公司及其下属子公司对银行、证券、保险兼业经营,美国金融重新进入混业时代。
设α1,α2,α3均为线性方程组Ax=b的解,下列向量中α1-α2,α1-2α2+α3,(α1-α3),α1+3α2-4α3,是导出组Ax=O的解向量的个数为()
表达式“a*(b-(c+d))”的后缀式为______。
NarratorListentoapartofalectureinanecologyclass.Whatdohydrologistsmainlystudy?
最新回复
(
0
)