(1)证明两个上三角矩阵A和B的乘积AB还是上三角矩阵;并且AB对角线元素就是A和B对应对角线元素的乘积. (2)证明上三角矩阵A的方幂Ak与多项式f(A)也都是上三角矩阵;并且Ak的对角线元素为a11k,a22k,…,annk;f(A)的对角线元

admin2018-11-23  18

问题 (1)证明两个上三角矩阵A和B的乘积AB还是上三角矩阵;并且AB对角线元素就是A和B对应对角线元素的乘积.
    (2)证明上三角矩阵A的方幂Ak与多项式f(A)也都是上三角矩阵;并且Ak的对角线元素为a11k,a22k,…,annk;f(A)的对角线元素为f(a11),f(a22),…,f(ann).

选项

答案(1)设A和B都是n阶上三角矩阵,C=AB,要说明C的对角线下的元素都为0,即i>j时,cij=0.cij=A的第i个行向量和B的第j个列向量对应分量乘积之和. 由于A和B都是n阶上三角矩阵,A的第i个行向量的前面i-1个分量都是0,B的第j个列向量的后面n-j个分量都是0,而i-1+n-j=n+(i-j-1)≥n,因此cij=0. cii=ai1b1i+…+aii-1bi-1i+aiibii+aii+1bi+1i+…+ainbni =aiibii(ai1…=aii-1=0,bi+1i=…=bni=0). (2)设A是上三角矩阵.由(1),直接可得Ak是上三角矩阵,并且对角线元素为a11k,a22k,annk. 设f(A)=amAm+am-1Am-1+…+1A+a0E.aiAi都是上三角矩阵,作为它们的和,f(A)也是上三角矩阵.f(A)的对角线元素作为它们的对角线元素的和,是f(a11),f(a22),f(ann).

解析
转载请注明原文地址:https://jikaoti.com/ti/jH1RFFFM
0

最新回复(0)