首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A,B均为n阶矩阵,且AB=A+B,则 ①若A可逆,则B可逆; ②若B可逆,则A+B可逆; ③若A+B可逆,则AB可逆;④A-E恒可逆。 上述命题中,正确的个数为( )
设A,B均为n阶矩阵,且AB=A+B,则 ①若A可逆,则B可逆; ②若B可逆,则A+B可逆; ③若A+B可逆,则AB可逆;④A-E恒可逆。 上述命题中,正确的个数为( )
admin
2017-03-08
55
问题
设A,B均为n阶矩阵,且AB=A+B,则
①若A可逆,则B可逆; ②若B可逆,则A+B可逆;
③若A+B可逆,则AB可逆;④A-E恒可逆。
上述命题中,正确的个数为( )
选项
A、1。
B、2。
C、3。
D、4。
答案
D
解析
由AB=A+B,有(A-E)B=A。若A可逆,则
|(A-E)B|=|A-E|×|B|=|A|≠0,
所以|B|≠0,即矩阵B可逆,从而命题①正确。
同命题①类似,由B可逆可得出A可逆,从而AB可逆,那么A+B=AB也可逆,故命题②
正确。
因为AB=A+B,若A+B可逆,则有AB可逆,即命题③正确。
对于命题④,用分组因式分解,即
AB-A-B+E=E,则有(A-E)(B-E)=E,
所以得A-E恒可逆,命题④正确。
所以应选D。
转载请注明原文地址:https://jikaoti.com/ti/iWwRFFFM
0
考研数学一
相关试题推荐
a≠1
已知曲线y=x3-3a2x+b与x轴相切,则b2可以通过Ⅱ表示为b2=________.
设曲线L:f(x,y)=l(f(x,y)具有一阶连续偏导数),过第Ⅱ象限内的点M和第N象限内的点N,F为己上从点M到点N的一段弧,则下列积分小于零的是
设函数f(x),g(x)在[a,b]上连续,在(a,b)内二阶可导存在相等的最大值,又f(a)=g(a),f(b)=g(b),证明:(I)存在η∈(a,b),使得f(η)=g(η);(Ⅱ)存在ξ∈(a,b),使得f〞(ξ)=g〞(ξ).
设X1,X2,…,Xn为来自总体N(μ,σ2)的简体随机样本,又为样本均值,记:
设y=y(x)是由函数方程㏑(x+2y)=x2-y2所确定的隐函数.(1)求曲线y=y(x)与直线y=-x的交点坐标(x0,yo);(2)求曲线y=y(x)在(1)中交点处的切线方程.
已知A为n阶方阵,r(A)=n-3,且α1,α2,α3是AX=0的三个线性无关的解向量,则()为AX=0的基础解系.
设A为n阶实对称矩阵,秩(A)=n,Aij是A=(aij)nxm中元素aij(i,j=1,2,…,n)的代数余子式,二次型f(x1,x2…,xn)=(I)记X=(x1,x2,…,xn)T,把f(x1,x2,…,xn)写成矩阵形式,并证明二次型f(x)
(1998年试题,九)设y=f(x)是区间[0,1]上的任一非负连续函数.试证存在x0∈(0,1),使得在区间[0,x0]上以f(x0)为高的矩形面积,等于在区间[x0,1]上以y=f(x)为曲边的曲边梯形面积;
设二次型f(x1,x2,x3)=x12-x22+2ax1x3+4x2x3,的负惯性指数为1,则a的取值范围是
随机试题
血浆中主要的载体蛋白是()。
DSA是
A.膀胱B.肾脏C.前尿道D.输尿管E.膀胱三角区初始血尿提示出血部位为()
女,30岁,停经50天。阴道流血l天,血量多于月经,鲜红色,伴有下腹部坠痛。内诊子宫增大如孕50天大小,宫颈内口可容1指,阴道有活动性出血。妊娠试验(+),此妇女诊断最大可能性是
用于房屋权属登记等房地产管理的房地产图须经()审核后,方具有法律效力。
下列关于施工验收层次划分的叙述中,不正确的是()。
初中生赵磊在篮球比赛中失误,使他所在班级没能赢得第一名,为此他一直闷闷不乐,并说自己再也不打篮球了,每当看到篮球他都气急败坏。这体现了中学生情绪发展的()。
下列有关我国全面发展教育的说法正确的是()。
被誉为“中国17世纪的工艺百科全书”的科学巨著是()。
在VBA中,下列关于过程的描述中正确的是()。
最新回复
(
0
)