首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A为n阶实对称矩阵,秩(A)=n,Aij是A=(aij)nxm中元素aij(i,j=1,2,…,n)的代数余子式,二次型f(x1,x2…,xn)= (I)记X=(x1,x2,…,xn)T,把f(x1,x2,…,xn)写成矩阵形式,并证明二次型f(x)
设A为n阶实对称矩阵,秩(A)=n,Aij是A=(aij)nxm中元素aij(i,j=1,2,…,n)的代数余子式,二次型f(x1,x2…,xn)= (I)记X=(x1,x2,…,xn)T,把f(x1,x2,…,xn)写成矩阵形式,并证明二次型f(x)
admin
2013-08-30
42
问题
设A为n阶实对称矩阵,秩(A)=n,A
ij
是A=(a
ij
)
nxm
中元素a
ij
(i,j=1,2,…,n)的代数余子式,二次型f(x
1
,x
2
…,x
n
)=
(I)记X=(x
1
,x
2
,…,x
n
)
T
,把f(x
1
,x
2
,…,x
n
)写成矩阵形式,并证明二次型f(x)的矩阵为A
-1
;
(Ⅱ)二次型g(x)=X
T
AX与f(x)的规范形是否相同?说明理由.
选项
答案
(Ⅰ)由题设, [*] 已知A为n阶实对称矩阵,从而上式两边可转置, [*] 已知r(A)=n,从而|A|≠0,A可逆,且A
-1
=[*] 则由(1)式知f(x
1
,x
2
,…,x
n
)=x
T
A
-1
X且(A
-1
)
T
=(A
T
)
-1
=A
-1
, 故f(x
1
,x
2
,…,x
n
)=x
T
A
-1
X是f(X)的矩阵表示,且相应矩阵为A
-1
,证毕. (Ⅱ)由于(A
-1
)
T
AA
-1
=(A
T
)
-1
层=A
-1
,则A
-1
与A合同,于是g(X)与X
T
AX与f(X)有相同规范形,得证.
解析
转载请注明原文地址:https://jikaoti.com/ti/xncRFFFM
0
考研数学一
相关试题推荐
设f(x)是连续函数,且f(x)=x+2∫01f(t)dt,则f(x)=________.
设函数f(x)在x=0处可导,且f(0)=0,则=
(2011年试题,三)设向量组α1=(1,0,1)T,α2=(0,1,1)T,α3=(1,3,5)T,不能由向量组β1=(1,1,1)T,β2=(1,2,3)T,β3=(3,4,α)T线性表示.将β1β2,β3用α1,α2,α3线性表示.
设方程组确定函数u=u(x,y),v=v(x,y),求
设z=f[φ(x)-y,ψ(y)+x],f具有连续的二阶偏导数,φ,ψ可导,求
设A为3阶矩阵,E为3阶单位矩阵,α,β是线性无关的3维列向量,且A的秩r(A)=2,Aα=β,Aβ=α,则|A+3E|为()
设线性方程组设a1=a3=k,a2=a4=-k(k≠0),且β1=(-1,1,1)T,β2=(1,1,-1)T是该方程组的两个解,写出此方程组的通解.
下列反常积分中发散的是()
设函数f(x)在[0,1]上连续,在(0,1)内可导,且f(0)=0,f(1)=1,证明:存在两个不同的点η,ζ∈(0,1),使得f’(η)f’(ζ)=1.
设A为4阶矩阵,r(A)=2,α1,α2为AX=0的两个线性无关解,β1,β2为AX=b的特解,下列四组中可作为AX=b的通解的是().
随机试题
Beautyhasalwaysbeenregardedassomethingpraiseworthy.Almosteveryonethinksattractivepeoplearehappierandhealthier,h
某医师研究丹参预防冠心病的作用,实验组用丹参,对照组用无任何作用的糖丸,这属于
A、旋覆花,半夏B、半夏,天南星C、半夏,藿香D、半夏,竹茹E、半夏,生姜胃热呕吐宜选
患者,男,78岁,肺癌晚期,住在某医院的安宁病房。护士小王巡视病房时发现患者四肢紫绀、皮肤湿冷、呼吸微弱,心跳减弱,呼之不应,此时患者()
直肠温度比口腔温度高
操作系统是软件系统的核心。()
古人根据月亮变化情况来记月,称为晦、朔、弦、望,其中“望”是指()。
在一次人类遗传病的调查中,发现两个家系中都有甲遗传病(基因为M、m)和乙遗传病(基因为R、r)患者,系谱图如下。以往研究表明在正常人群中Mm基因型频率为10-4。据此请回答下列相关问题:甲病的遗传方式为:________,乙病最可能的遗传方式为___
F9K6J3F3G5M
在《校那庐抗议》中提出“以中国之伦常名教为原本,辅以诸国富强之术”宗旨的是()。
最新回复
(
0
)