首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
(1)设f(χ)=|χ-a|g(χ),其中g(χ)连续,讨论f′(a)的存在性. (2)讨论f(χ)=在χ=0处的可导性. (3)设f(χ)=讨论f(χ)在χ=0处的可导性.
(1)设f(χ)=|χ-a|g(χ),其中g(χ)连续,讨论f′(a)的存在性. (2)讨论f(χ)=在χ=0处的可导性. (3)设f(χ)=讨论f(χ)在χ=0处的可导性.
admin
2019-04-22
29
问题
(1)设f(χ)=|χ-a|g(χ),其中g(χ)连续,讨论f′(a)的存在性.
(2)讨论f(χ)=
在χ=0处的可导性.
(3)设f(χ)=
讨论f(χ)在χ=0处的可导性.
选项
答案
(1)由[*]=-g(a) 得f′
-
(a)=-g(a); 由[*] 得f′
+
(a)=g(a), 当g(a)=0时,由f′
-
(a)=f
+
(a)=0得f(χ)在χ=a处可导且f′(a)=0; 当g(a)≠0时,由f′
-
(a)≠f′
+
(a)得f(χ)在χ=a处不可导. (2)因为[*]=f(0), 所以f(χ)在χ=0处连续. [*] (3)f(0)=f(0-0)=0,f(0+0)=[*]=0, 由f(0-0)=f(0+0)=f(0)得f(χ)在χ=0处连续; 由[*]=0得f′
-
(0)=0, [*] 得f′
+
(0)=0, 因为f′
-
(0)=f′
+
(0)=0,所以f(χ)在χ=0处可导.
解析
转载请注明原文地址:https://jikaoti.com/ti/gaLRFFFM
0
考研数学二
相关试题推荐
已知
求微分方程y"+4y’+4y=e-2x的通解.
设函数f(x)二阶连续可导,f(0)=1且有f’(x)+3∫0xf’(t)dt+2x∫01f(tx)dt+e-x=0,求f(x).
设α,β都是n维列向量时,证明:①αβT的特征值为0,0,…,0,βTα.②如果α不是零向量,则α是αβT的特征向量,特征值为βTα.
设A是主对角元为0的四阶实对称阵,E是四阶单位阵,B=且E+AB是不可逆的对称阵,求A.
已知线性方程组的一个基础解系为(b11,b12,…,b1,2n)T,(b21,b22,…,b2,2n)T,…,(bn1,bn2…,bn,2n)T.试写出线性方程组的通解,并说明理由.
设随机变量X1,X2,…,Xn,…相互独立,则根据列维一林德伯格中心极限定理,当n定充分大时,X1+X2+…+Xn近似服从正态分布,只要Xi(i=1,2,…)满足条件()
讨论下列函数的连续性并判断间断点的类型:
设f(χ)在[0.1]二阶可导,且f(0)=f(1)=0,试证:ξ∈(0,1)使得f〞(ξ)=f′(ξ).
设3阶实对称矩阵A的特征值为1,2,3,η1=(-1,-1,1)T和η2=(1,-2,-1)T分别是属于1和2的特征向量,求属于3的特征向量,并且求A.
随机试题
预期要发生不良后果时复杂情绪反应是缺乏根据的消极自我暗示是
调配毒性药品处方时,必须( )。
为截瘫病人留置导尿管的目的是
行政责任的承担方式包括行政处罚和()。
一般来说,债券的期限越长,其市场价格变动的可能性就()
下列各项中,关于长期借款利息费用会计处理表述正确的有()。(2013年)
设P(A)=a,P(B)=b,P(A∪B)=c,则P(A)=()。
社会保障制度是一项社会安全制度。()
在宏操作命令中,不属于运行和控制流程的命令是()
Theboyhadaviolentpaininhisstomachaftereatingtoomuchice-cream.
最新回复
(
0
)