首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设函数f(x)二阶连续可导,f(0)=1且有f’(x)+3∫0xf’(t)dt+2x∫01f(tx)dt+e-x=0,求f(x).
设函数f(x)二阶连续可导,f(0)=1且有f’(x)+3∫0xf’(t)dt+2x∫01f(tx)dt+e-x=0,求f(x).
admin
2017-07-10
74
问题
设函数f(x)二阶连续可导,f(0)=1且有f’(x)+3∫
0
x
f’(t)dt+2x∫
0
1
f(tx)dt+e
-x
=0,求f(x).
选项
答案
因为x∫
0
1
f(tx)dt=∫
0
x
f(u)du,所以f’(x)+3∫
0
x
f’(t)dt+2x∫
0
1
f(tx)dt+e
-x
=0可化为 f’(x)+3∫
0
x
f’(t)dt+2∫
0
x
f(t)dt+e
-x
=0, 两边对x求导得f"(x)+3f’(x)+2f(x)=e
-x
, 由λ
2
+3λ+2=0得λ
1
=-1,λ
2
=-2, 则方程f"(x)+3f’(x)+2f(x)=0的通解为C
1
e
-x
+C
2
e
-2x
. 令f"(x)+3f’(x)+2f(x)=e
-x
的一个特解为y
0
=axe
-x
,代入得a=1, 则原方程的通解为f(x)=C
1
e
-x
+C
2
e
-2x
+xe
-x
. 由f(0)=1,f’(0)=-1得C
1
=0,C
2
=1,故原方程的解为f(x)=e
-2x
+xe
-x
.
解析
转载请注明原文地址:https://jikaoti.com/ti/epzRFFFM
0
考研数学二
相关试题推荐
A、 B、 C、 D、 D
设区域D是由直线y=x-1,y=x+1,x=2及坐标轴围成的区域(图3-8).(X,Y)服从区域D上的均匀分布.求条件密度函数fY|X(y|x)和fX|Y(x|y).
设,证明fˊ(x)在点x=0处连续.
证明曲线y=x4-3x2+7x-10在x=1与x=2之间至少与x轴有—个交点.
验证函数yx=C1+C12x是差分方程yx+2-3yx+1+yx=0的解,并求y。=1,y1=3时方程的特解.
计算y=e-x与直线y=0之间位于第一象限内的平面图形绕x轴旋转产生的旋转体的体积.
对(I)中的任意向量ξ2,ξ3,证明ξ1,ξ2,ξ3线性无关.
设n,元线性方程组Ax=b,其中当a为何值时,该方程组有无穷多解,并求通解.
设向量组α1=(1,1,1,3)T,α2=(-1,-3,5,1)T,α3=(3,2,-1,P+2)T,α4=(-2,-6,10,p)T.p为何值时,该向量组线性相关?并在此时求出它的秩和一个极大线性无关组.
已知f〞(x)<0,f(0)==0,试证:对任意的两正数x1和x2,恒有f(x1+x2)<f(x1)+f(x2)成立.
随机试题
有如下程序#include<stdio.h>voidconvert(intd){if(d<10){printf(’’%d’’,d);convert(d+1);}}
茶艺是一种综合性的生活艺术,但对“茶艺”的_________诠释究竟是什么,却众说纷纭,即使开茶艺馆的人,也多半_________。填入画横线部分最恰当的一项是:
经清洗消毒后达到无菌要求是指
在某工程双代号网络计划中,工作M的持续时间及开始节点和完成节点的最早时间与最迟时间如下图所示,刚工作M的总时差为( )。
《娱乐场所管理条例》规定:歌舞娱乐场所设置的包厢、包间应当安装展现室内整体环境的透明门窗,并不得有内锁装置。()
被称为“中国三大瓷都”的是()
个人独资企业,是指依法设立,由一个自然人投资,财产为投资人个人所有,投资人以其个人财产对企业债务承担无限责任的经营实体。根据上述定义,下列选项中叙述正确的是()。
判断下列句子是否符合普通话语法规范。我们怀着无比崇敬的心情聆听了艺术大师的精彩讲座。(中山大学2014)
()是从二维表列的方向进行的运算。
Dearsir,ThankyouforyourletteronMarch15.Weknowthatyouwanttoorder10000piecesofRainbowRaincoatModel2.
最新回复
(
0
)