首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A是3阶矩阵,λ1=1,λ2=2,λ3=3是A的特征值,对应的特征向量分别是 ξ1=[2,2,-1]T,ξ2=[-1,2,2]T,ξ3=[2,-1,2]T. 又β=[1,2,3]T. 计算:(1)Anξ1;(2)Anβ.
设A是3阶矩阵,λ1=1,λ2=2,λ3=3是A的特征值,对应的特征向量分别是 ξ1=[2,2,-1]T,ξ2=[-1,2,2]T,ξ3=[2,-1,2]T. 又β=[1,2,3]T. 计算:(1)Anξ1;(2)Anβ.
admin
2018-09-25
26
问题
设A是3阶矩阵,λ
1
=1,λ
2
=2,λ
3
=3是A的特征值,对应的特征向量分别是
ξ
1
=[2,2,-1]
T
,ξ
2
=[-1,2,2]
T
,ξ
3
=[2,-1,2]
T
.
又β=[1,2,3]
T
.
计算:(1)A
n
ξ
1
;(2)A
n
β.
选项
答案
(1)因Aξ
1
=λ
1
ξ
1
,于是A
n
ξ
1
=λ
1
n
ξ
1
,故A
n
ξ
1
=1.ξ
1
= [*] (2)利用Aξ
i
=λ
i
ξ
i
,有A
n
ξ
i
=λ
i
n
ξ
i
将β表成ξ
1
,ξ
2
,ξ
3
的线性组合.设 β=x
1
ξ
1
+x
2
ξ
2
+x
3
ξ
3
, [*]
解析
转载请注明原文地址:https://jikaoti.com/ti/eu2RFFFM
0
考研数学一
相关试题推荐
设A是n阶矩阵,若A2=A,证明A+E可逆.
设A是任一n(n≥3)阶方阵,A*是其伴随矩阵,又k为常数,且k≠0,±1,则必有(kA)*=
设A为n阶可逆矩阵,α为n维列向量,b为常数,记分块矩阵P=其中A*是A的伴随矩阵,E为n阶单位矩阵.(Ⅰ)计算并化简PQ;(Ⅱ)证明矩阵Q可逆的充分必要条件是αTA-1α≠b.
已知A=,若A*B(A*)*=8A-1B+12E,①求矩阵B.
设A是n阶矩阵,α1,α2,α3是n维列向量,且α1≠0,Aα1=kα1,Aα2=lα1+kα2,Aα3=lα2+kα3,l≠0,证明α1,α2,α3线性无关.
已知α1=(1,一1,1)T,α2=(1,t,一1)T,α3=(t,1,2)T,β=(4,t2,一4)T,若β可以由α1,α2,α3线性表出且表示法不唯一,求t及β的表达式.
若αi1,αi2,…,αir与αj1,αj2,…,αjt都是α1,α2,…,αs的极大线性无关组,则r=t.
设当x>0时,方程kx+=1有且仅有一个解,求k的取值范围.
设f(x)在[0,b]可导,f′(x)>0(x∈(0,b)),t∈[0,b],问t取何值时,图4.10中阴影部分的面积最大?最小?
已知方程组总有解,则λ应满足__________.
随机试题
乘彼堍垣,以望复关。___________,泣涕涟涟。
______Sundays,theelderlycouplegototheparkforawalkeveryevening.
A.粉红色泡沫样痰B.绿色痰C.砖红色胶冻样痰D.铁锈痰E.脓臭痰铜绿假单胞菌感染可见
下列属于少神的常见临床表现的是
制定课程目标的依据主要有()
宣传决策是一个提出问题、分析问题的动态过程。()
写出单总线结构计算机中指令M()VER1,R2(含义是将寄存器R1中内容写入寄存器R2中)的操作步骤。
一般而言,对于时间间隔主观估计最准确的间隔时间是()。(2010年)
______指可以不经著作权人许可,无需支付报酬,使用其作品。
Whatisthemainsubjectofthepassage?WhichofthefollowingisNOTmentionedasaproblemforemployersthatispotentially
最新回复
(
0
)