首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设n阶矩阵A满足(aE-A)(bE-A)=O且a≠b.证明:A可对角化.
设n阶矩阵A满足(aE-A)(bE-A)=O且a≠b.证明:A可对角化.
admin
2018-05-17
27
问题
设n阶矩阵A满足(aE-A)(bE-A)=O且a≠b.证明:A可对角化.
选项
答案
由(aE-A)(bE-A)=O,得|aE-A|.|bE-A|=0,则|aE-A|=0或者 |bE-A|=0.又由(aE-A)(bE-A)=O,得,r(aE-A)+r(bE-A)≤n. 同时r(aE-A)+r(bE-A)≥r[(aE-A)-(bE-A)]=r[(a-b)E]=n. 所以r(aE-A)+r(bE-A)=n. (1)若|aE-A|≠0,则r(aE-A)=n,所以r(bE-A)=0,故A=bE. (2)若|bE-A|≠0,则r(bE-A)=n,所以r(aE-A)=0,故A=aE. (3)若|aE-A|=0且|bE-A|=0,则a,b都是矩阵A的特征值. 方程组(aE-A)X=0的基础解系含有n-r(aE-A)个线性无关的解向量,即特征值a对应的线性无关的特征向量个数为n-r(aE-A)个; 方程组(bE-A)X=0的基础解系含有n-r(bE-A)个线性无关的解向量,即特征值b对应的线性无关的特征向量个数为n-r(bE-A)个. 因为n-r(aE-A)+n-r(bE-A)=n,所以矩阵A有n个线性无关的特征向量,所以A一定可以对角化.
解析
转载请注明原文地址:https://jikaoti.com/ti/dQdRFFFM
0
考研数学二
相关试题推荐
(2006年试题,22)已知非齐次线性方程组有3个线性无关的解.(I)证明方程组系数矩阵A的秩rA=2;(Ⅱ)求a,b的值及方程组的通解.
(2008年试题,二)微分方程(y+x2e-x)dx一xdy=0的通解是__________.
(2011年试题,三)如图1—3—2,一容器的内侧是由图中曲线y轴旋转一周而成的曲面,该曲线由x2+y2=连接而成.(I)求容器的容积;(Ⅱ)若将容器内盛满的水从容器顶部全部抽出,至少需要做多少功?(长度单位:m,重力加速度为gm/s2,水的密度为1
(2006年试题,二)设α1,α2,…,αs均为n维列向量,A是m×n矩阵,下列选项正确的是().
(2010年试题,7)设向量组Iα1,α2,α3可由向量组Ⅱ:β1,β2,……βs线性表示,下列命题正确的是().
微分方程(y+x2)dx-2xdy=0满足的特解为______.
设y1,y2是一阶线性非齐次微分方程y’+p(x)y=q(x)的两个特解.若常数λ,μ使λy1+μy2是该方程的解,λy1-μy2是对应的齐次方程的解,则
试确定A,B,C的值,使得ex(1+Bx+Cx2)=1+Ax+v(x3).其中v(x3)是当x→0时比x3高阶的无穷小.
设b为常数.设L与l从x=1延伸到x→+∞之间的图形的面积八为有限值,求b及A的值.
设f(x)连续,∫0xtf(x-t)dt=1-cosx,求
随机试题
辛弃疾《水龙吟》词:"落日楼头,断鸿声里,___________."
A核素标记抗原B核素标记抗体C限量D等量E过量免疫放射分析中标记物的使用为
患儿,4个月,主因夜惊、夜啼睡眠不安,烦躁易激惹,到保健门诊就医。初步诊断为维生素D缺乏性佝偻病。连服1个月后改预防量为()。
A、 B、 C、 D、 E、 E
在我国,公务员承担行政责任的方式有()。
高程测量的方法有()。
在一节音乐课上,张老师带领同学们学习《让我们荡起双桨》,在同学们演唱完歌曲后,张老师让同学将音乐的画面画在画纸上,体现了义务教育阶段的()基本理念。
以下对伪指令的解释错误的是()。
Writeanoteofabout50-60wordsbasedonthefollowingsituation:Paul,yourEnglishteacherfromAustralia,hasaskedy
Asweknow,itisveryimportantthatafirmshouldpayattentiontothetrainingofitsstaffasthereexistmanyweakpartsin
最新回复
(
0
)