首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A=(α1,α2,α3,α4)是4阶矩阵.A*为A的伴随矩阵.若(1,0,1,0)T是方程组Ax=0的一个基础解系,则A*x=0的基础解系可为
设A=(α1,α2,α3,α4)是4阶矩阵.A*为A的伴随矩阵.若(1,0,1,0)T是方程组Ax=0的一个基础解系,则A*x=0的基础解系可为
admin
2019-05-06
26
问题
设A=(α
1
,α
2
,α
3
,α
4
)是4阶矩阵.A
*
为A的伴随矩阵.若(1,0,1,0)
T
是方程组Ax=0的一个基础解系,则A
*
x=0的基础解系可为
选项
A、α
1
,α
3
.
B、α
1
,α
2
.
C、α
1
,α
2
,α
3
.
D、α
2
,α
3
,α
4
答案
D
解析
首先,4元齐次线性方程组A
*
x=0的基础解系所含解向量的个数为4一r(A
*
),其中r(A
*
)为A
*
的秩,因此求r(A
*
)是一个关键.其次,由Ax=0的基础解系只含1个向量,即4一r(A)=1,得r(A)=3,于是由r(A
*
)与r(A)的关系,知r(A
*
)=1,因此,方程组A
*
x=0的基础解系所含解向量的个数为4一r(A
*
)=3,故选项A、(B)不对.再次,由(1,0,1,0)
T
是方程组Ax=0或x
1
α
1
+x
2
α
2
+x
3
α
3
+x
4
α
4
=0的解,知α
1
+α
3
=0,故α
1
与α
3
线性相关,于是只有选项D正确.
转载请注明原文地址:https://jikaoti.com/ti/dDoRFFFM
0
考研数学一
相关试题推荐
求微分方程x2y’+xy=y2满足y丨x=1=1的特解.
设X为一个总体且E(X)=k,D(X)=1,X1,X2,…,Xn为来自总体的简单随机样本,令?
设f(x)在x=0的邻域内二阶连续可导,=2,求曲线y=f(x)在点(0,f(0))处的曲率.
设随机变量X的密度函数为f(x)=1/2e|x|(-∞<x<+∞).问X,|X|是否相互独立?
设,α1,α2,α3,α4为四元非齐次线性方程组BX=b的四个解,其中
设A,B都是三阶矩阵,A=,且满足(A*)-1B=ABA+2A2,则B=_______.
设an+1/an≤bn+1/bn(n=1,2,…;an>0,bn>0),证明:(1)若级数bn收敛,则级数an收敛;(2)若级数an发散,则级数bn发散.
(2010年)设函数z=z(x,y)由方程确定,其中F为可微函数,且F’2≠0,则
[2010年]设m,n均是正整数,则反常积分的收敛性().
(1987年)设则在x=a处
随机试题
Peoplehavebeenholdingheateddiscussionsrecentlyaboutwomen’sexperienceintheworkplace.LastmonthSherylSandberg,chie
EnteringthedramaroomIamimmediatelysurroundedbythefamiliarsights,smellsandsounds.Streaks(条纹,线条)oflightcastbyth
由于MRI是利用磁场与特定原子核的核磁共振作用所产生信号来成像的,MRI系统的强磁场和射频场有可能使心脏起搏器失灵,也容易使各种体内金属性植人物移位,在激励电磁波作用下,体内的金属还会因为发热而造成伤害。可以带人MRI检查室的是
下列各项中,关于政府补助表述不正确的有()。
当总供给曲线为正斜率时,单位原材料的实际成本增加,总供给曲线移向()。
太平天国侍王府的“三绝”是指()。
面试中的常见问题不包括()
学习了七言律诗以后,教师要求同学们尽可能地列举自己知道的七言律诗,以下列举错误的是()。
下列现象中,不属于教育的是()。(2016·江西)
20世纪80年代无家可归人数的急剧增加不能归因于将精神病患者从医院推向“社区护理”,尽管大部分这种社区护理的供给是确实不存在的。下面哪项,如果正确,最能支持上述论述?
最新回复
(
0
)