设(Ⅰ)和(Ⅱ)是两个四元齐次线性方程组,(Ⅰ)为(Ⅱ)有一个基础解系(0,1,1,0)T,(-1,2,2,1)T.求(Ⅰ)和(Ⅱ)的全部公共解.

admin2019-05-11  47

问题 设(Ⅰ)和(Ⅱ)是两个四元齐次线性方程组,(Ⅰ)为(Ⅱ)有一个基础解系(0,1,1,0)T,(-1,2,2,1)T.求(Ⅰ)和(Ⅱ)的全部公共解.

选项

答案(Ⅰ),由此可决定c1与c2应该满足的条件. 具体计算过程:将c1η1+c2η2=(-c2,c1+2c2,c1+2c2,c2)T,代入(Ⅰ),得到 [*] 解出c1+c2=0.即当c1+c2=0时c1η1+c2η2也是(Ⅰ)的解.于是(Ⅰ)和(Ⅱ)的公共解为: c(η1-η2),其中C可取任意常数.

解析
转载请注明原文地址:https://jikaoti.com/ti/cPLRFFFM
0

随机试题
最新回复(0)