首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
[2003年] 设函数y=y(x)在(一∞,+∞)内具有二阶导数,且y’≠0,x=x(y)是y=y(x)的反函数. 求变换后的微分方程满足初始条件y(0)=0,y’(0)=3/2的解.
[2003年] 设函数y=y(x)在(一∞,+∞)内具有二阶导数,且y’≠0,x=x(y)是y=y(x)的反函数. 求变换后的微分方程满足初始条件y(0)=0,y’(0)=3/2的解.
admin
2019-04-08
32
问题
[2003年] 设函数y=y(x)在(一∞,+∞)内具有二阶导数,且y’≠0,x=x(y)是y=y(x)的反函数.
求变换后的微分方程满足初始条件y(0)=0,y’(0)=3/2的解.
选项
答案
方程①所对应的齐次方程y’’一y=0的通解为Y=C
1
e
x
+C
2
e
-x
.设方程①的特解为 y
*
=Acosx+sinx,代入方程①求得A=0,B=一1/2,故y
*
=一(1/2)sinx,从而y’’一y=sinx的通解是 y(x)=C
1
e
x
+C
2
e
-x
一(1/2)sinx. 由y(0)=0,y’(0)=3/2,得C
1
=1,C
2
=一1,故所求的初值问题的解为 y(x)=e
x
一e
-x
一(1/2)sinx.
解析
转载请注明原文地址:https://jikaoti.com/ti/bioRFFFM
0
考研数学一
相关试题推荐
设3阶矩阵A=(α1,α2,α3)有3个不同的特征值,且α3=α1+2α2。(Ⅰ)证明:r(A)=2;(Ⅱ)设β=α1+α2+α3,求方程组Ax=β的通解。
已知线性方程组的一个基础解系为(b11,b21,…,b1,2n)T,(b21,b22,…,b2,2n)T,…,(bn1,bn2,…,bn,2n)T,试写出线性方程组的通解,并说明理由。
设随机变量X服从参数为1的泊松分布,则P{X=E(X2)}=________。
设总体X的概率密度为其中θ是未知参数(0<θ<1),X1,X2,…,Xn为来自总体X的简单随机样本,记N为样本值x1,x2,…,xn中小于1的个数,求θ的最大似然估计。
设某班车起点站上客人数X服从参数λ(λ>0)的泊松分布,每位乘客在中途下车的概率为p(0<p<1),且途中下车与否相互独立,以Y表示在中途下车的人数,求:(Ⅰ)在发车时有n个乘客的条件下,中途有m人下车的概率;(Ⅱ)二维随机变量(X,Y)的概率分布。
设f(x)在[x1,x2]可导,0<x1<x2,证明:ξ∈(x1,x2)使得=f(ξ)-ξf′(ξ).
求曲面积分I=(x+cosy)dydz+(y+cosz)dzdx+(z+cosx)dxdy,其中S为x+y+z=π在第一卦限部分,取上侧.
已知f(x,y)=,设D为由x=0、y=0及x+y=t所围成的区域,求F(t)=f(x,y)dxdy.
设,α1,α2,α3,α4为四元非齐次线性方程组BX=b的四个解,其中
设f(x)二阶连续可导,f(0)=0,f’(0)=1,且[xy(x+y)-f(x)y]dx+[f’(x)+x2y]dy=0为全微分方程,求f(x)及该全微分方程的通解.
随机试题
《西厢记诸宫调》是董解元根据唐代传奇小说_______进行的再刨作。
提示腹腔内空腔脏器损伤的临床表现有
全身大面积烧伤,一般修复创面很少用的办法是()
诱导IgE产生的主要细胞因子是
根据《工程造价咨询企业管理办法》,下列要求中,属于甲级工程造价咨询企业资质标准的有()。
建造师在施工过程中应遵守用电安全规定,不允许()。
立卷是指按照一定的原则和方法,将有保存价值的文件分门别类整理成案卷,亦称组卷。下列选项中关于立卷的基本原则说法正确的有()。卷内备考表的编制应符合的规定有()。
从所给四个选项中,选择最合适的一个填入问号处,使之呈现一定规律性:
从蜻蜓低飞预测天气,到蟾蜍搬家预测地震,中国古代民问积累了不少的经验。这些经验经过一代代人口口相传,时至今日,在民间,也包括今天的网络上来看,依旧有不低的信任度。而现代地震研究,强调的则是数据和概念。在古代对于某一地区的准确预报,放在今天信息汇集和横向对比
A、RobinsonisanEnglish.B、LiisveryfamiliarwithLondon.C、ItistheLi’sfirstlookatLondon.D、ItistheRobinson’sfirst
最新回复
(
0
)