首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)二阶连续可导,f(0)=0,f’(0)=1,且[xy(x+y)-f(x)y]dx+[f’(x)+x2y]dy=0为全微分方程,求f(x)及该全微分方程的通解.
设f(x)二阶连续可导,f(0)=0,f’(0)=1,且[xy(x+y)-f(x)y]dx+[f’(x)+x2y]dy=0为全微分方程,求f(x)及该全微分方程的通解.
admin
2018-05-21
23
问题
设f(x)二阶连续可导,f(0)=0,f’(0)=1,且[xy(x+y)-f(x)y]dx+[f’(x)+x
2
y]dy=0为全微分方程,求f(x)及该全微分方程的通解.
选项
答案
令P(x,y)=xy(x+y)-f(x)y,Q(x,y)=f’(x)+x
2
y,因为[xy(x+y)-f(x)y]dx+[f’(x)+x
2
y]dy=0为全微分方程,所以[*],即f"(x)+f(x)=x
2
, 解得f(x)=C
1
cosx+C
2
sinx+x
2
-2,由f(0)=0,f’(0)=1得C
1
=2,C
2
=1, 所以f(x)=2cosx+sin3c+x
2
-2. 原方程为[xy
2
-(2cosx+sinx)y+2y]dx+(-2sinx+cosx+2x+x
2
y)dy=0,整理得(xy
2
dx+x
2
ydy)+2(ydx+xdy)-2(ycoscrdx+sinxdy)+(-ysinxdx+cosxdy)=0, 即d(1/2x
2
y
2
+2xy-2ysinx+ycosx)=0, 原方程的通解为1/2y
2
+2xy-2ysinx+ycosx=C.
解析
转载请注明原文地址:https://jikaoti.com/ti/ZYVRFFFM
0
考研数学一
相关试题推荐
设曲线C为圆x2+y2=R2,则曲线积分∮C(x2+y2+2xy)ds=_________.
设f(x)在[a,b]上有二阶连续导数,证明∫abf(x)dx=∫abf"(x)(x一a)(x一b)dx.
设f(x)=,证明曲线y=f(x)在区间(ln2,+∞)上与x轴围成的区域有面积存在,并求此面积.
设。
设函数φ(y)具有连续导数,在围绕原点的任意分段光滑简单闭曲线L上,曲线积分的值恒为同一常数.(1)证明对右半平面x>0内的任意分段光滑简单闭曲线C,有=0.(2)求函数φ(y)的表达式.
已知,B是3阶非零矩阵,且AB=0,则()
设一本书各页的印刷错误的个数X服从泊松分布.已知该书中有一个和两个印刷错误的页数相同,现任意随机抽查3页,则此3页中都没有印刷错误的概率为p=_______.
设随机变量X的概率密度函数为f(x)=求常数A的值.
设f(x;t)=((x-)(t-1)>0,x≠t),函数f(x)由下列表达式确定,求出f(x)的连续区间和间断点,并研究f(x)在间断点处的左右极限.
设二元函数f(x,y)=|x—y|φ(x,y),其中φ(x,y)在点(0,0)处的某邻域内连续.证明:函数f(x,y)在点(0,0)处可微的充分必要条件是φ(0,0)=0.
随机试题
修建某特长双车道公路隧道的过程中,由于地下水比较丰富,出现了涌水现象。结合上述内容,回答下列问题。隧道涌水处理可采用()。
考生文件夹下存在一个数据库文件“samp2.accdb”,里面已经设计好表对象“tDoctor”、“tOffice”、“tPa—tient”和“tSubscribe”,同时还设计出窗体对象“fQuery”。试按以下要求完成设计。现有一个已经建好的“f
奇经八脉与十二经脉之气相交会的八个腧穴称为脏、腑、气、血、筋、脉、骨、髓的精气聚会的八个腧穴称为
右上腹痛牵涉右肩背见于
设f(x)在x0处可导,且等于()。
下列关于β系数的说法正确的有()。
根据支付结算法律制度的规定,企业网上银行子系统的主要业务功能包括()。
测量仪器按其机构和功能特点可分为四种,但不包括()。
简述实施低成本战略的最佳时机和风险。
[*]
最新回复
(
0
)