首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A是三阶矩阵,α1,α2,α3是线性无关的三维列向量,且满足Aα1﹦-2α1-4α3,Aα2﹦α1﹢2α2﹢α3,Aα3﹦α1﹢3α3。 (I)求矩阵A的特征值; (Ⅱ)求可逆矩阵P使得P-1AP为对角阵。
设A是三阶矩阵,α1,α2,α3是线性无关的三维列向量,且满足Aα1﹦-2α1-4α3,Aα2﹦α1﹢2α2﹢α3,Aα3﹦α1﹢3α3。 (I)求矩阵A的特征值; (Ⅱ)求可逆矩阵P使得P-1AP为对角阵。
admin
2019-01-22
26
问题
设A是三阶矩阵,α
1
,α
2
,α
3
是线性无关的三维列向量,且满足Aα
1
﹦-2α
1
-4α
3
,Aα
2
﹦α
1
﹢2α
2
﹢α
3
,Aα
3
﹦α
1
﹢3α
3
。
(I)求矩阵A的特征值;
(Ⅱ)求可逆矩阵P使得P
-1
AP为对角阵。
选项
答案
(I)由已知得 A(α
1
,α
2
,α
3
)﹦(-2α
1
-4α
3
,α
1
﹢2α
2
﹢α
3
,α
1
﹢3α
3
) ﹦(α
1
,α
2
,α
3
)[*] 记P
1
﹦(α
1
,α
2
,α
3
),B﹦[*],则有AP
1
﹦P
1
B。 由于α
1
,α
2
,α
3
线性无关,则矩阵P
1
可逆,所以Pα
1
-1
AP
1
﹦B,因此矩阵A与矩阵B相似,则 |B-λE|﹦[*]﹦-(λ-2)
2
(λ﹢1), 矩阵B的特征值为2,2,-1,故矩阵A的特征值为2,2,-1。 (Ⅱ)由(B-2E)x﹦0可得,矩阵B对应于特征值λ﹦2的特征向量为β
1
(0,1,-1)
T
,β
2
﹦(1,0,4)
T
;由(B﹢E)x﹦0可得,矩阵B对应于特征值A﹦-1的特征向量为β
3
﹦(1,0,1)
T
。 [*] 本题考查矩阵的特征值与相似对角化。要求矩阵A的特征值,若能得到矩阵A及其特征多项式,则可直接求出其特征值;若得不到矩阵A的具体形式,则可根据矩阵A的性质求其特征值,例如,相似矩阵具有相同的特征值。n阶矩阵能相似对角化的充分必要条件是矩阵有n个线性无关的特征向量。
解析
转载请注明原文地址:https://jikaoti.com/ti/al1RFFFM
0
考研数学一
相关试题推荐
已知α={2,一1,1},β={1,3,一1},试在α,β所确定的平面∏内求与α垂直的单位向量γ.
设α1,α2,α3,α4线性无关,β1=2α1+α3+α4,β2=2α1+α2+α3,β3=α2一α4,β4=α3+α4,β5=α2+α3.(1)求r(β1,β2,β3,β4,β5);(2)求β1,β2,β3,β4,β5的一个最大无关
已知β可用α1,α2,…,αs线性表示,但不可用α1,α2,…,αs-1线性表示.证明(1)αs不可用α1,α2,…,αs-1线性表示;(2)αs可用α1,α2,…,αs-1,β线性表示.
AB=0,A,B是两个非零矩阵,则
设随机变量X的概率密度为f(x)=试求:(I)常数C;(Ⅱ)概率;(Ⅲ)X的分布函数.
(1)问k为何值时A可相似对角化?(2)此时作可逆矩阵U,使得U-1AU是对角矩阵.
已知随机变量X,Y的概率分布分别为并且P{X+Y=1}=1,求:(I)(X,Y)的联合分布;(Ⅱ)X与Y是否独立?为什么?
设随机变量Yi(i=1,2,3)相互独立,并且都服从参数为p的0—1分布.令求随机变量(X1,X2)的联合概率分布.
设A,B都是对称矩阵,并且E+AB可逆,证明(E+AB)-1是对称矩阵.
计算曲面积分,其中∑为圆柱面x2+y2=R2界于z=0及z=H之间的部分,r为曲面上的点到原点的距离(H>0).
随机试题
电动机温度过高或冒烟的可能原因有哪些?
痰稠色白量多,滑而易咳出者,应届( )
有“呕家圣药”之称的药物是()
6~14岁血红蛋白的低限为
结扎疗法可用于多种病症,但不宜用于
A.药物吸收B.药物分布C.药物代谢D.药物中毒E.药物排泄肾小球的滤过率是成人的30%~40%,使用利尿剂等较易出现酸碱失衡,即影响()。
某项工作有一项紧前工作而无紧后工作,紧前工作的自由时差为3,本项工作的自由时差为2,该项工作的总时差应为( )。
求向量组α1=(1,0,2,1)T,α2=(1,2,0,1)T,α3=(2,1,3,0)T,α4=(2,5,-1,4)T的一个最大线性无关组,并将其余向量用该最大线性无关组表示。
(2000年试题,八)设有一半径为R的球体,P0是此球的表面上的一个定点,球体上任一点的密度与该点到P0距离的平方成正比(比例常数k>0),求球体的重心位置.
A、Givehiscontributionsometimelater.B、Borrowsomemoneyfromthewoman.C、BuyanexpensivegiftforGemma.D、Takeupacoll
最新回复
(
0
)