首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知β可用α1,α2,…,αs线性表示,但不可用α1,α2,…,αs-1线性表示.证明 (1)αs不可用α1,α2,…,αs-1线性表示; (2)αs可用α1,α2,…,αs-1,β线性表示.
已知β可用α1,α2,…,αs线性表示,但不可用α1,α2,…,αs-1线性表示.证明 (1)αs不可用α1,α2,…,αs-1线性表示; (2)αs可用α1,α2,…,αs-1,β线性表示.
admin
2017-08-07
22
问题
已知β可用α
1
,α
2
,…,α
s
线性表示,但不可用α
1
,α
2
,…,α
s-1
线性表示.证明
(1)α
s
不可用α
1
,α
2
,…,α
s-1
线性表示;
(2)α
s
可用α
1
,α
2
,…,α
s-1
,β线性表示.
选项
答案
由于β可用α
1
,α
2
,…,α
s
线性表示,可设有表示式 β=k
1
α
1
+k
2
α
2
+…+k
m
α
m
, (I) (1)用反证法 如果α
s
可用α
1
,α
2
,…,α
s-1
线性表示;设α
s
=t
1
α
1
+t
2
α
2
+…+t
m-1
α
m-1
,代入(I)式得β用α
1
,α
2
,…,α
s-1
线性表示式: β=(k
1
+t
1
)α
1
+(k
2
+t
2
)α
2
+…+(k
m-1
+t
m-1
)α
m-1
,与条件矛盾. (2)(I)中的k
m
≠0(否则β可用α
1
,α
2
,…,α
s-1
线性表示).于是有 [*]
解析
转载请注明原文地址:https://jikaoti.com/ti/CeVRFFFM
0
考研数学一
相关试题推荐
设λ0是n阶矩阵A的特征值,且齐次线性方程组(λ0E-A)X=0的基础解系为η1,η2,则A的属于λ0的全部特征向量为().
设随机变量X的密度函数为φ(x),且φ(-x)=φ(x),F(x)为X的分布函数,则对任意实数a,有().
(Ⅰ)因为[*]所以[*]单调减少,而a≥0,即[*]是单调减少有下界的数列,根据极限存在准则,[*](Ⅱ)由(Ⅰ)得0≤[*]对级数[*]因为[*]存在,所以级数[*]根据比较审敛法,级数
(2002年试题,一)已知实二次型f(x1,x2,x3)=a(x12+x22+x32)+4x1x2+4x1x3+4x2x3经正交变换x=Py可化成标准形f=6y12,则a=______________.
(2009年试题,21)设二次型f(x1,x2,x3)=a22+a22+(a一1)x32+2x1x3—2x2x3.求二次型f的矩阵的所有特征值;
(2005年试题,20)已知二次型f(x1,x2,x3)=(1—a)x12+(1一a)x22+2x32+2(1+a)x1x2的秩为2.求正交变换x=Qy,把,(x1,x2,x3)化成标准形;
(2005年试题,20)已知二次型f(x1,x2,x3)=(1—a)x12+(1一a)x22+2x32+2(1+a)x1x2的秩为2.求a的值;
(2011年试题,20)设向量组α1=(1,0,1)T,α2=(0,1,1)T,α3=(1,3,5)T不能由向量组β1=(1,1,1)T,β2=(1,2,3)T,β3=(3,4,α)T线性表示(I)求a的值;(II)将β1,β2,β3用α1,α2,α3线性
随机试题
提升大绳头从滚筒内向外拉出(),开始卡绳头操作。
下列袋装砂井、塑料排水板实测项目中,属于关键项目的是()。
【背景资料】承包人承担某水闸工程施工,编制的施工总进度计划中相关工作如下:①场内建路;②水闸主体施工;③围堰填筑;④井点降水;⑤材料仓库;⑥基坑开挖;⑦地基处理;⑧办公、生活用房等。监理工程师批准了该施工总进度计划。其中部分工程施工网络进度计划如图1所
建设工程项目总进度目标论证的主要任务有()。
某企业购入一批计算机,固定资产总价值380000元,随机附带不单独计价的几套软件,其现行市场价值为50000。该批计算机的入账价值为()元。
关于爱岗敬业的说法中你认为正确的是()。
甲、乙签订买卖合同,约定甲先交货,货到1个月内付款。交货期届至时,甲发现财产以逃避债务的行为,甲可行使()。
下面叙述错误的是()。
Top4ThingstoDoBeforeYouGoTravelpreparationscanbestressful.That’swhyyoushouldtickoffthese4thingsimmediat
Thenewuniversitygraduateisconfidentof(win)______thepostastheassistanttothemanagingdirector.
最新回复
(
0
)