设A是3阶方阵,有3个特征值为0,1,1,且不相似于对角矩阵,则r(E-A)+r(A)=________.

admin2021-07-27  25

问题 设A是3阶方阵,有3个特征值为0,1,1,且不相似于对角矩阵,则r(E-A)+r(A)=________.

选项

答案4

解析 因λ=0是特征方程|λE-A|=0的单根,所以对应的线性无关特征向量有且只有一个,即Ax=O的基础解系只有一个非零解,故r(A)=2.因λ=1是二重特征根,又A不相似于对角矩阵,故对应的线性无关特征向量也只有一个,即1=3-r(E-A).即r(E-A)=2.因此r(E-A)+r(A)=4.
转载请注明原文地址:https://jikaoti.com/ti/aSlRFFFM
0

最新回复(0)