首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
(1)由方程sin(xy)+ln(y-x)=x确定函数y=y(x),求。 (2)设函数y=y(x)由2xy=x+y确定,求。 (3)设由e-y+x(y-x)=1+x确定y=y(x),求y″(0). (4)设y=y(x)由x-∫1x+ye-t2dt=0确定,
(1)由方程sin(xy)+ln(y-x)=x确定函数y=y(x),求。 (2)设函数y=y(x)由2xy=x+y确定,求。 (3)设由e-y+x(y-x)=1+x确定y=y(x),求y″(0). (4)设y=y(x)由x-∫1x+ye-t2dt=0确定,
admin
2019-09-27
25
问题
(1)由方程sin(xy)+ln(y-x)=x确定函数y=y(x),求
。
(2)设函数y=y(x)由2
xy
=x+y确定,求
。
(3)设由e
-y
+x(y-x)=1+x确定y=y(x),求y″(0).
(4)设y=y(x)由x-∫
1
x+y
e
-t
2
dt=0确定,求
。
(5)设f(x)=
,求df(x)|
x=1
。
(6)设函数y=y(x)由
可确定,求
。
选项
答案
(1)x=0代入sin(xy)+ln(y-x)=x得y=1, sin(xy)+ln(y-x)=x两边关于x求导得cos(xy).[*]=1, 将x=0,y=1代入上式得[*]=1. (2)当x=0时,y=1. 2
xy
=x+y两边关于x求导得2
xy
ln2.[*], 将x=0,y=1代入得[*]=ln2-1,故dy|
x=0
=(ln2-1)dx. (3)x=0时,y=0. e
-y
+x(y-x)=1+x两边关于x求导得-e
-y
y′+y-x+x(y′-1)=1,则y′(0)=-1; -e
-y
y′+y-x+x(y′-1)=1两边关于x求导得e
-y
(y′)
2
-e
-y
y″+2(y′-1)+xy″=0, 代入得y″(0)=-3. (4)x=0时,y=1. x-∫
1
x+y
e
-t
2
dt=0两边关于x求导得 1-e
-(x+y)
2
.[*]=e-1. (5)由f(x)=[*]=xe
x
得f′(x)=(x+1)e
x
, 从而f′(1)=2e,故df(x)|
x=1
=2edx. (6)[*]
解析
转载请注明原文地址:https://jikaoti.com/ti/a8CRFFFM
0
考研数学一
相关试题推荐
A、 B、 C、 D、 C
设f(x)是(-∞,+∞)内的偶函数,并且当X∈(-∞,0)时,有f(x)=x+2,则当x∈(0,+∞)时,f(x)的表达式是[].
已知r(A)=r1,且方程组AX=α有解,r(B)=r1,且BY=B无解,设A=[α1,α2,…,αn],B=[β1,β2,…,βn],且r(α1,α2,…,αn,β1,β2,…,βn,β)=r,则()
设随机变量(X,Y)的分布函数为F(x,y),边缘分布为FX(x)和FY(y),则概率P{X>x,Y>y}等于()
计算曲面积分I﹦(2x3﹢az)dydz﹢(2y3﹢ax)dzdx﹢(2zz3﹢ay)dxdy,其中曲面∑为上半球面x﹦的外侧。
设X1,X2,…,XN和Y1,Y2,…,YN是分别取自总体均为正态分布N(μ,σ2)的两个相互独立的简单随机样本,记它们的样本方差分别为S12和S22,则统计量T﹦(S12﹢S22)的方差D(T)﹦()
将n个观测数据相加时,首先对小数部分按“四舍五入”舍去小数位后化为整数.试利用中心极限定理估计:估计数据个数n满足何条件时,以不小于90%的概率,使舍位误差之和的绝对值小于10的数据个数n.
设3阶矩阵A的各行元素之和都为2,向量α1=(一1,1,1)T,α2=(2,一1,1)T都是齐次线性方程组AX=0的解.求A.
设向量组(I)与向量组(Ⅱ),若(I)可由(Ⅱ)线性表示,且r(I)=,r(Ⅱ)=r.证明:(I)与(Ⅱ)等价.
袋中装有5个白球,3个红球,第一次从袋中任取一球,取后不放回,第二次从袋中任取2球,用Xi表示第i次取到的白球数,i=1,2.求P{X1=0,X2≠0},P{X1X2=0};
随机试题
日本的森重敏根据母亲的不同性格列出对幼儿个性形成有不同影响的四种育人方式。如果其感情表现强烈,心情浮躁,情绪很不稳定,或喜或忧,那么,这类母亲的教养方式是()
任脉的生理功能有
男,36岁。急性化脓性阑尾炎5天,未行手术治疗。今日出现高热、寒战,右季肋区疼痛。查体:体温39.0℃,皮肤巩膜轻度黄染,肝区叩痛(+)。实验室检查:ALT、AST、总胆红素均轻度升高。腹部B超提示肝脏可见数个液性暗区。最可能的诊断是
Therewasaguythatwasbornwithcancer.Hecoulddieatanymoment.Sohewasalwavsathome,underhismother’scare.Onedayh
教师专业发展的实践一反思取向强调教学文化、教师文化以及教师所处教研组、年级组对教师专业发展的作用。()
正当理由是一般侵权民事责任的抗辩事由之一,包括()。
设函数f(x)在x=2的某邻域内可导,且f(x)=ef(x),f(2)=1,计算f(n)(2).
用于指明表格数据源类型的属性是
Shoppingforclothesisnotthesameexperienceforamanasitisforawoman.
A、Sleeping.B、Holdingameeting.C、Indulgingthemselves.D、Quarrelling.B
最新回复
(
0
)