设f(χ)在[0,1]上连续,在(0,1)内可导,且f(1)=0,证明:存在ξ∈(0,1),使得f′(ξ)sinξ+f(ξ)cosξ=0.

admin2019-02-23  30

问题 设f(χ)在[0,1]上连续,在(0,1)内可导,且f(1)=0,证明:存在ξ∈(0,1),使得f′(ξ)sinξ+f(ξ)cosξ=0.

选项

答案令φ(χ)=f(χ)sinχ, φ(0)=φ(1)=0,由罗尔定理,存在ξ∈(0,1),使得φ′(ξ)=0, 而φ′(χ)=f′(χ)sinχ+f(χ)cosv,故f′(ξ)sinξ+f(ξ)cosξ=0.

解析
转载请注明原文地址:https://jikaoti.com/ti/YpWRFFFM
0

最新回复(0)