首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x,y)二阶连续可偏导,g(x,y)=f(exy,x2+y2),且 证明:g(x,y)在(0,0)处取极值,并判断是极大值还是极小值,求极值.
设f(x,y)二阶连续可偏导,g(x,y)=f(exy,x2+y2),且 证明:g(x,y)在(0,0)处取极值,并判断是极大值还是极小值,求极值.
admin
2016-09-12
34
问题
设f(x,y)二阶连续可偏导,g(x,y)=f(e
xy
,x
2
+y
2
),且
证明:g(x,y)在(0,0)处取极值,并判断是极大值还是极小值,求极值.
选项
答案
由f(x,y)=1-x-y+[*]得 f(x,y)=-(x-1)-y+[*] 由可微的定义得 f(1,0)=0,f’
x
(1,0)=f’
y
(1,0)=-1. [*]=xe
xy
f’
2
+2yf’
2
,g’
x
(0,0)=0,g’
y
(0,0)=0. [*]=y
2
e
xy
yf’
1
+ye
xy
(ye
xy
f’’
11
+2xf’’
12
)+2f’
1
+2x(ye
xy
f’’
21
+2xf’’
22
), [*]=(e
xy
+xye
xy
)f’
1
+ye
xy
(xe
xy
f’’
11
+2yf’’
12
)+2x(xe
xy
f’’
21
+2yf’’
22
), [*]=x
2
e
xy
f’
1
+xe
xy
(xe
xy
f’’
11
+2yf’’
12
)+2f’
2
+2y(xe
xy
f’’
21
+2yf’’
22
), 则A=g’’
xx
(0,0)=-2,B=g’’
xy
(0,0)=-1,C=g’’
yy
(0,0)=-2, 因为AC-B
2
=3>0且A<0,所以g(x,y)在(0,0)处取到极大值,极大值为g(0,0)=0.
解析
转载请注明原文地址:https://jikaoti.com/ti/yyzRFFFM
0
考研数学二
相关试题推荐
曲线的渐近线有________。
设函数f(x)在闭区间[a,b]上有定义,在开区间(a,b)内可导,则________。
若方程a0xn+a1xn-1+…+an-1x=0有一个正根x0,证明方程a0nxn-1+a1(n-1)xn-2+….+an-1=0必有一个小于x0的正根。
曲线y=(x-1)2(x-3)2的拐点个数为________。
设a1、a2、…、an满足,ai∈R,i=1,2,…,n,证明:方程a1cosx+a2cos3x+…+ancos(2n-1)x=0在内至少有一个实根。
设抛物线y=-x2+Bx+C与x轴有两个交点x=a,x=b(a<b),又f(x)在[a,b]上有二阶导数,且f(a)=f(b)=0,若曲线y=f(x)与y=-x2+Bx+C在(a,b)内有一个交点,求证:在(a,b)内存在一点ξ,使得f"(ξ)+2=0.
设其中g(x)有二阶连续导数,且g(0)=1,g’(0)=-1讨论f’(x)在(-∞,+∞)上的连续性。
设f(x)在区间[-a,a](a>0)上具有二阶连续导数,f(0)=0.写出f(x)的带拉格朗日余项的一阶麦克劳林公式。
设函数f(u)在(0,+∞)内具有二阶导数,且z=满足等式若f(1)=0,f’(1)=1,求函数f(u)的表达式。
设A为n阶可逆矩阵,则下列结论正确的是().
随机试题
(2007年4月)可以用于表示可靠性随时间变化的规律的曲线(函数)有_______、_______、______、_______。
急性心肌梗死溶栓治疗,常用的溶栓剂有
能反映类风湿关节炎病情严重程度的实验室指标是
下列说法错误的是
下列药物中,最容易变色的是
下列叙述中,可以打开数据库设计器的有()。
特别聪明的学生非智能因素较差,所以要特别打磨他们的性格。()
当然,想象并不是凭空__________的。丰富的想象来源于知识的广博和平时对生活深入、细致地观察。观察就要用专业的角度去关注、__________周围的事物,有意识地汲取、思索分析,看在眼里,记在心里。依次填入划横线部分最恰当的一项是:
植物:玫瑰:爱情
Johnquitthejobbecausehewas__________(与老板有矛盾).
最新回复
(
0
)