首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
证明:当0<a<b<π时, bsinb+2cosb+πb>asina+2cosa+πa.
证明:当0<a<b<π时, bsinb+2cosb+πb>asina+2cosa+πa.
admin
2021-07-15
15
问题
证明:当0<a<b<π时,
bsinb+2cosb+πb>asina+2cosa+πa.
选项
答案
令F(x)=xsinx+2cosx+πx,只需要证明F(x)在(0,π)上单调递增, F’(x)=sinx+xocsx-2sinx+π=π+xcosx-sinx 由此式很难确定F’(x)在(0,π)上的符号,为此有 F"(x)=-xsinx<0,x∈(0,π) 即函数F’(x)在(0,π)上单调递减,又F’(π)=0,所以F’(x)>0,x∈(0,π),于是F(b)>F(a),即 bsinb+2cosb+πb>asina+2cosa+πa
解析
转载请注明原文地址:https://jikaoti.com/ti/UglRFFFM
0
考研数学二
相关试题推荐
没线性方程组AX=kβ1+β2有解,其中A则k为().
在区间[0,83内,对函数f(x)=,罗尔定理()
设二次型f(x1,x2,x3)=2(a1x1+a2x2+a3x3)2+(b1x1+b2x2+b3x3)2,设证明二次型f对应的矩阵为2ααT+ββT;
设函数f(x)连续,则在下列变限积分定义的函数中,必为偶函数的是()
设A是n阶矩阵,P是n阶可逆矩阵,n维列向量α是矩阵A的属于特征值λ的特征向量,那么在下列矩阵中①A2;②P-1AP;③AT;④。α肯定是其特征向量的矩阵个数为()
设f(x)在(a,b)二阶可导,x1,x2∈(a,b),x1≠x2,∈(0,1),若f’’(x)>0(∈(a,b)),有f[tx1+(1-t)x2]<tf(x1)+(1-t)f(x2),特别有[f(x1)+f(x2)].
设A是n阶非零矩阵,Am=0,下列命题中不一定正确的是
设D=是正定矩阵,其中A,B分别是m,n阶矩阵.记P=(1)求PTDP.(2)证明B-CTA-1C正定.
当χ∈[0,1]时,f〞(χ)>0,则f′(0),f′(1),f(1)-f(0)的大小次序为().
设其中D1={(x,y){x2+y2≤R2},D2={(x,y){x2+y2≤2R2},D3={(x,y)}|x|≤R,|y|≤R},则下列关于I1,I2,I3大小关系正确的是
随机试题
国有独资公司董事会成员为________人。()
正常月经周期中后半期的基础体温较前半期升高________。
脑血管意外最常见的原因是()
投资效益指标是投资经济活动成效的数量表现,是()项目投入和产出对比关系的工具。
商品化会计核算软件开发经销单位在售出软件后应承担售后服务工作,在下列工作中,()不是软件开发销售商必须提供的。
宪法的地位主要体现在()。
随着淡水供应已达极限,五大洲50多个国家或许很快就将因争夺水资源而发生冲突,除非他们就如何分享流经国际边界的河流迅速达成协议。目前全球各地都在谈论夺水战争,2001年3月,联合国秘书长安南说,“对淡水的激烈争夺很可能成为未来冲突和战争的根源,美国
蚂蚁,一种令人生厌的“小生命”,如今以它为原料制成的保健品却()地闯进了市民的保健领域。
下列()属于契约型金融机构。
根据作用的途径,法的价值可以分为()
最新回复
(
0
)