设f(x)在(a,b)二阶可导,x1,x2∈(a,b),x1≠x2,∈(0,1),若f’’(x)>0(∈(a,b)),有 f[tx1+(1-t)x2]<tf(x1)+(1-t)f(x2), 特别有[f(x1)+f(x2)].

admin2019-08-12  32

问题 设f(x)在(a,b)二阶可导,x1,x2∈(a,b),x1≠x2∈(0,1),若f’’(x)>0(∈(a,b)),有
f[tx1+(1-t)x2]<tf(x1)+(1-t)f(x2),
特别有[f(x1)+f(x2)].

选项

答案因f’’(x)>0(x∈(a,b))[*]f(x)在(a,b)为凹的 [*] (4.5)相应的式子成立.注意tx1+(1-t)x2∈(a,b) [*] f(x1)>f[tx1+(1-t)x2]+f’[tx1+(1-t)x2][x1-(tx1+(1-t)x2)] =f[tx1+(1-t)x2]+f’[tx1+(1-t)x2](1-t)(x1-x2), f(x2)>f[tx1+(1-t)x2]+f’[tx1+(1-t)x2][x2-(tx1+(1-t)x2)] =f[tx1+(1-t)x2]-f’[tx1+(1-t)x2]t(x1-x2), 两式分别乘t与(1-t)后相加得 tf(x1)+(1-t)f(x2)>f[tx1+(1-t)x2].

解析
转载请注明原文地址:https://jikaoti.com/ti/7PERFFFM
0

最新回复(0)