首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A是n阶矩阵,P是n阶可逆矩阵,n维列向量α是矩阵A的属于特征值λ的特征向量,那么在下列矩阵中 ①A2; ②P-1AP; ③AT; ④。 α肯定是其特征向量的矩阵个数为( )
设A是n阶矩阵,P是n阶可逆矩阵,n维列向量α是矩阵A的属于特征值λ的特征向量,那么在下列矩阵中 ①A2; ②P-1AP; ③AT; ④。 α肯定是其特征向量的矩阵个数为( )
admin
2019-08-12
27
问题
设A是n阶矩阵,P是n阶可逆矩阵,n维列向量α是矩阵A的属于特征值λ的特征向量,那么在下列矩阵中
①A
2
; ②P
-1
AP; ③A
T
; ④
。
α肯定是其特征向量的矩阵个数为( )
选项
A、1。
B、2。
C、3。
D、4。
答案
B
解析
由Aα=λα,α≠0,有A
2
α=A(λα)=λAα=λ
2
α,即α必是A
2
属于特征值λ
2
的特征向量。又
知α必是矩阵
属于特征值
的特征向量。关于②和③则不一定成立。这是因为(P
一1
AP)(P
一1
α)=P
一1
Aα=λP
一1
α,按定义,矩阵P
一1
AP的特征向量是P
一1
α。因为P
一1
α与α不一定共线,因此α不一定是P
一1
AP的特征向量,即相似矩阵的特征向量是不一样的。线性方程组(λE—A)x=0与(λE一A
T
)x=0不一定同解,所以α不一定是第二个方程组的解,即α不一定是A
T
的特征向量。所以应选B。
转载请注明原文地址:https://jikaoti.com/ti/HPERFFFM
0
考研数学二
相关试题推荐
(12年)证明:
(07年)设函数f(x)在(0,+∞)上具有二阶导数,且f"(x)>0,令un=f(n)(n=1,2,…),则下列结论正确的是
(88年)设函数y=y(x)满足微分方程y”一3y’+2y=2ex.其图形在点(0,1)处的切线与曲线y=x2一x+1在该点处的切线重合,求函数y的解析表达式.
(87年)(1)设f(x)在[a,b]内可导,且f’(x)>0,则f(x)在(a,b)内单调增加.(2)设g(x)在x=c处二阶可导,且g’(c)=0,g"(c)<0,则g(c)为g(x)的一个极大值.
(1998年)设(2E-C-1B)AT=C-1,其中E是4阶单位矩阵.AT是4阶矩阵A的转置矩阵.求A.
(2013年)设A=(aij)是3阶非零矩阵,|A|为A的行列式,Aij为aij的代数余子式.若aij+Aij=0(i,j=1,2,3).则|A|=________.
(2000年)设E为4阶单位矩阵,且B-(E+A)-1(E-A).则(E+B)-1=_______.
(2011年)设A为3阶矩阵,将A的第2列加到第1列得矩阵B,再交换B的第2行与第3行得单位矩阵.记P1=,则A=
(2008年)设A为n阶非零矩阵,E为n阶单位矩阵,若A3=O,则
(2006年)设A为3阶矩阵,将A的第2行加到第1行得B,再将B的第1列的-1倍加到第2列得C,记P=,则
随机试题
焊丝按制造方法与其形状,可分为实心焊丝和药芯焊丝两大类。
在基本放大电路中,输入电阻最大的放大电路是【】
下列何种因素可影响血块收缩试验结果
腮腺炎的超声图像特点是
胎粪吸入性肺炎是由于宫内感染性肺炎是由于
不属于思维形式障碍的是
以下不以动物全体入药的是()
甲、乙、丙、丁设立了宏达有限责任公司。甲以建设用地使用权认购出资500万元;乙以商标专用权认购出资600万元;丙以现金认购出资1000万元,但约定在公司成立2年内予以缴清:丁以一幅古画认购出资500万元。在公司的经营过程中,因资金紧张向A银行贷款500万元
下列业务中不属于税务代理范围的是( )。
某国,经济以农业为主,2001年遭受百年不遇的大旱,国际有关组织号召各国人民向该国伸出援助之手。下面最可能的推断是()。
最新回复
(
0
)