首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设y=y(x)是第一象限内一条向上凸的连续曲线,其上任意一点(x,y)处的曲率半径为R=y3,且此曲线上点(1,1)处的切线方程为y=1,求函数y(x).
设y=y(x)是第一象限内一条向上凸的连续曲线,其上任意一点(x,y)处的曲率半径为R=y3,且此曲线上点(1,1)处的切线方程为y=1,求函数y(x).
admin
2016-01-23
20
问题
设y=y(x)是第一象限内一条向上凸的连续曲线,其上任意一点(x,y)处的曲率半径为R=y
3
,且此曲线上点(1,1)处的切线方程为y=1,求函数y(x).
选项
答案
曲线y=y(x)上任意一点处的曲率半径为R=[*],故由题设条件有 [*],即y
3
y’’+1=0. 这是不显含x的可降阶的微分方程.令[*]=p,则 [*] 于是方程化为 [*] 两边积分,得[*] 因曲线y=y(x)上点(1,1)处切线方程为y=1,故y(1)=1,y’(1)=p(1)=0.代入上述 方程,可得C
1
=[*]从而有 [*] 于是有[*]=dx.两边积分,得 [*]=x+C
2
由
解析
本题主要考查曲率半径的概念,并由此构造一个可降阶的微分方程.建立出这个微分方程,解之即可.
注:对干求解可降阶的高阶微分方程的特解问题,要根据初始条件随时确定积分后出现的任意常数,这样一般会使计算得以简化.请读者参阅求解过程仔细体会.
转载请注明原文地址:https://jikaoti.com/ti/TfPRFFFM
0
考研数学一
相关试题推荐
向量组α1,α2,α3线性无关,且α1+aα2+4α3,2α1+α2-α3,α2-α3线性相关,则α=________.
设向量组(Ⅰ):α1,α2,…,αs的秩为r1,向量组(Ⅱ):β1,β2,…,βs的秩为r2,且向量组(Ⅱ)可由向量组(Ⅰ)线性表示,则().
设向量组α1,α2,…,αs为齐次线性方程组AX=0的一个基础解系,Aβ≠0.证明:齐次线性方程组BY=0只有零解,其中B=(β,β+α1,…,β+αs).
设η1,…,ηs是非齐次线性方程组AX=b的一组解,则k1η1+…+ksηs为方程组AX=b的解的充分必要条件是________.
设f(x)二阶可导,且f"(x)>0,证明:当x≠0时,f(x)>x.
设函数y=f(x)二阶可导,f’(x)≠0,且与x=ψ(y)互为反函数,求ψ"(y).
设f(x)为单调可微函数,g(x)与f(x)互为反函数,且f(2)=4,f’(2)=,f’(4)=6,则g’(4)等于()。
设函数f(x)∈c[a,b],且f(x)>0,D为区域a≤x≤b,a≤y≤b,证明:.
设在点处,函数f(x,y)=x2+(y-1)2(x≠0)在条件x2/a2+y2+b2=1(a>0,b<0)下取得最小值,求a,b的值。
随机试题
试从SIRS与CARS的平衡失调解释MODS的发生机制?
已知其还原态还原性由强到弱的顺序为()。
下列不属于消防应急照明灯具检测项目的是()。
根据《商业银行个人理财业务风险管理指引》的要求,保证收益型理财计划的起点金额,人民币应在( )以上。
Iconsidermyselfsomethingofanexpertonapologies.Aquicktemperhas【C1】__________mewithplentyofopportunitiestomaketh
TD-SCDMA载频间隔为1.6MHz而且频段使用灵活,在5MHz内可有三个载频。()
目前世界上软件出口最大的发展中国家是()。
Therearemanywaysinwhichthephenomenaoflanguageandcultureareintimatelyrelated.Allphenomenaareuniquetohumansan
It’swidelyagreedthatgirlsgenerallystarttalkingearlierthanboys,andusemorecomplexvocabulary.Whenthey【C1】______sc
A、About34,000.B、About800,000.C、About20,000.D、About200,000.C
最新回复
(
0
)