首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设a1,a2,…,an是一组n维向量,证明它们线性无关的充分必要条件是任一n维向量都可由它们线性表示。
设a1,a2,…,an是一组n维向量,证明它们线性无关的充分必要条件是任一n维向量都可由它们线性表示。
admin
2019-01-19
35
问题
设a
1
,a
2
,…,a
n
是一组n维向量,证明它们线性无关的充分必要条件是任一n维向量都可由它们线性表示。
选项
答案
必要性:a
1
,a
2
,…,a
n
是线性无关的一组n维向量,因此r(a
1
,a
2
,…,a
n
)=n。对任一n维向 量b,因为a
1
,a
2
,…,a
n
,b的维数n小于向量的个数n+1,故a
1
,a
2
,…,a
n
,b线性相关。 综上所述r(a
1
,a
2
,…,a
n
,b)=n。 又因为a
1
,a
2
,…,a
n
线性无关,所以n维向量b可由a
1
,a
2
,…,a
n
线性表示。 充分性:已知任一n维向量b都可由a
1
,a
2
,…,a
n
线性表示,则单位向量组:ε
1
,ε
2
,…,ε
n
可由 a
1
,a
2
,…,a
n
线性表示,即 r(ε
1
,ε
2
,…,ε
n
)=n≤r(a
1
,a
2
,…,a
n
), 又a
1
,a
2
,…,a
n
是一组n维向量,有r(a
1
,a
2
,…,a
n
)≤n。 综上,r(a
1
,a
2
,…,a
n
)=n。所以a
1
,a
2
,…,a
n
线性无关。
解析
转载请注明原文地址:https://jikaoti.com/ti/RrBRFFFM
0
考研数学三
相关试题推荐
(99年)设n阶矩阵A与B相似,E为n阶单位矩阵,则【】
(05年)从数1,2,3,4中任取一个数,记为X,再从1,…,X中任取一个数,记为Y,则P(Y=2}=_______.
乒乓球盒中有15个球,其中有9只新球和6只旧球.第一次比赛时任取3只使用,用后放回(新球使用一次就成旧球).第二次比赛时也任取3只球,求此3只球均为新球的概率_______.(写出计算式即可).
设有向量组(Ⅰ):α1=(1,0,2)T,α2=(1,1,3)T,α3=(1,一1,a+2)T和向量组(Ⅱ):β1=(1,2,a+3)T,β2=(2,1,a+6)T,β3=(2,1,a+4)T.试问:当口为何值时,向量组(Ⅰ)与(Ⅱ)等价?当a为何值时,向
设曲线L位于χoy平面的第一象限内,L上任一点M处的切线与y轴总相交,交点记为A,已知,且L过点(),求L的方程为_______.
设A为三阶矩阵,α1,α2,α3是线性无关的三维列向量,且满足Aα1=α1+α2+α3,Aα2=2α2+α3,Aα3=2α2+3α3(Ⅰ)求矩阵B,使得A(α1,α2,α3)=(α1,α2,α3)B;(Ⅱ)求矩阵A的特征值;
已知二次型f(χ1,χ2,χ3)=χTAχ在正交变换χ=Qy下的标准形为y12+y22,且Q的第3列为(Ⅰ)求矩阵A;(Ⅱ)证明A+E为正定矩阵,其中E为3阶单位矩阵.
曲线直线y=2及y轴所围的平面图形绕x轴旋转一周所成的旋转体体积为___________.
求I=(|x|+|y|)dxdy,其中D是由曲线xy=2,直线y=x一1及y=x+1所围成的区域.
设函数f(x)存x=0的某邻域内具有一阶连续导数,且f(0)≠0,f’(0)≠0,若af(h)+bf(2h)一f(0)当h→0时是比h高阶的无穷小,试确定a、b的值.
随机试题
热电偶是测量()参数的元件。
依据占有人是否基于本权而对物进行占有,可将占有分为【】
导致气机郁结的情志刺激因素是
男孩,8岁,右手烧伤,有水疱,剧痛,在现场急救中,为减轻疼痛,最适当的处理方法是
应用作业条件危险性评价法(LEC方法)时,如果事故相当可能发生,而且人员易暴露于风险环境的频率是每周一次,同时其后果又很严重,并可能导致一人死亡时,该危险源属于( )。
下列情形中,人民法院应当裁定驳回起诉的有()。
衡量一个程序设计好坏的标准,主要有()。
胡某与刘某本为好友,某日二人相聚饮酒。酒后,二人产生争执,胡某用桌上的烟灰缸打伤了刘某的胳膊。刘某报案后,公安机关赶到现场,将对胡某进行行政处罚。因刘某所受伤害较轻,且二人关系良好。在胡某道歉并答应赔偿刘某医疗费用2000元后,二人达成调解协议,公安机关决
()对于预算相当于工程对于()
WhentheTVviewerturnsonhisset,whatsortofprogramsdoeshehavetochoosefrom?Youmightthinktherewouldbemoreprog
最新回复
(
0
)