首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设a1,a2,…,an是一组n维向量,证明它们线性无关的充分必要条件是任一n维向量都可由它们线性表示。
设a1,a2,…,an是一组n维向量,证明它们线性无关的充分必要条件是任一n维向量都可由它们线性表示。
admin
2019-01-19
37
问题
设a
1
,a
2
,…,a
n
是一组n维向量,证明它们线性无关的充分必要条件是任一n维向量都可由它们线性表示。
选项
答案
必要性:a
1
,a
2
,…,a
n
是线性无关的一组n维向量,因此r(a
1
,a
2
,…,a
n
)=n。对任一n维向 量b,因为a
1
,a
2
,…,a
n
,b的维数n小于向量的个数n+1,故a
1
,a
2
,…,a
n
,b线性相关。 综上所述r(a
1
,a
2
,…,a
n
,b)=n。 又因为a
1
,a
2
,…,a
n
线性无关,所以n维向量b可由a
1
,a
2
,…,a
n
线性表示。 充分性:已知任一n维向量b都可由a
1
,a
2
,…,a
n
线性表示,则单位向量组:ε
1
,ε
2
,…,ε
n
可由 a
1
,a
2
,…,a
n
线性表示,即 r(ε
1
,ε
2
,…,ε
n
)=n≤r(a
1
,a
2
,…,a
n
), 又a
1
,a
2
,…,a
n
是一组n维向量,有r(a
1
,a
2
,…,a
n
)≤n。 综上,r(a
1
,a
2
,…,a
n
)=n。所以a
1
,a
2
,…,a
n
线性无关。
解析
转载请注明原文地址:https://jikaoti.com/ti/RrBRFFFM
0
考研数学三
相关试题推荐
(99年)设n阶矩阵A与B相似,E为n阶单位矩阵,则【】
(03年)设随机变量X与Y独立,其中X的概率分布为而Y的概率密度为f(y),求随机变量U=X+Y的概率密度g(u).
(05年)设二维随机变量(X,Y)的概率分布为若随机事件{X=0}与{X+Y=1}相互独立,则a=_______,b=_______.
两家影院竞争1000名观众,每位观众随机地选择影院且互不影响.试用中心极限定理近似计算:每家影院最少应设多少个座位才能保证“因缺少座位而使观众离去”的概率不超过1%?(Ф(2.328)=0.9900)
已知3阶方阵A=(aij)3×3的第1行元素为:a11=1,a12=2,a13=-1.(A*)T=其中A*为A的伴随矩阵.求矩阵A.
设α1,α2,α3均为3维列向量,记矩阵A=[一α1,2α2,α3],B=[α1+α2,α1—4α3,α2+2α3],如果行列式|A|=一2,则行列式|B|=__________.
两曲线y=与y=ax2+b在点(2,)处相切,则()
设函数f(x)存x=0的某邻域内具有一阶连续导数,且f(0)≠0,f’(0)≠0,若af(h)+bf(2h)一f(0)当h→0时是比h高阶的无穷小,试确定a、b的值.
设f(x)在区间[0,1]上可积,当0≤x<y≤1时,|f(x)-f(y)|≤|arctanx-arctany|又f(1)=0,证明:|∫01f(x)dx|≤ln2.
已知y=lnlnlnx,则y'=__________。
随机试题
男、24岁。左上后牙咀嚼痛1个多月,近1周加剧。近日牙齿出现松动,完全不能触动。疼痛剧烈,不能入睡,发热、头痛。检查发现左上后牙牙龈红肿,触痛明显,左上第一磨牙远中牙合面龋,无探痛,叩痛(卅)此患者确切的临床诊断为
见图示为
婴儿化脓性脑膜炎最常见的并发症是:
《建设工程工程量清单计价规范》附录表中的“项目名称”是指()的项目名称。
投标人对招标人提供的措施项目清单所列项目,按规定()。
以非现金资产进行债务重组时,债权人对于接受抵债资产过程中发生的运杂费、保险费等相关费用,应计入()。
采用直接分配法分配辅助生产费用时,要考虑各辅助生产车间相互提供产品或劳务的情况。()
人的全面发展
党的十七大指出,“台独”分裂势力加紧进行分裂活动,严重危害两岸关系和平发展。两岸同胞要共同
A、Theyareveryintelligent.B、Theyarethemostintelligent.C、Theyaremoreintelligent.D、Theyarelessintelligent.D短文最后提到,
最新回复
(
0
)