首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设矩阵的特征方程有一个二重根,求a的值,并讨论A是否可相似对角化.
设矩阵的特征方程有一个二重根,求a的值,并讨论A是否可相似对角化.
admin
2016-01-11
35
问题
设矩阵
的特征方程有一个二重根,求a的值,并讨论A是否可相似对角化.
选项
答案
矩阵A的特征多项式为[*] 若λ=2是特征方程的二重根,则有2
2
一16+18+3a=0,解得a=一2. 当a=一2时,A的特征值为2,2,6,矩阵[*] 的秩为1,故λ=2对应的线性无关的特征向量有两个,从而A可相似对角化.若λ=2不是特征方程的二重根,则λ
2
一8λ+18+3a为完全平方数,从而18+3a=16,解得[*].当[*]时,A的特征值为2,4,4,矩阵 [*] 的秩为2,故λ=4对应的线性无关的特征向量只有一个,从而A不可相似对角化.
解析
本题主要考查矩阵特征值、特征向量的求法及矩阵相似于一个对角矩阵的充分必要条件.通过讨论矩阵特征方程二重根的情况以及对应的线性无关的特征向量的个数,从而决定矩阵A是否可以相似于对角矩阵.
转载请注明原文地址:https://jikaoti.com/ti/QuDRFFFM
0
考研数学二
相关试题推荐
设3阶实对称矩阵A满足A2=2A,已知二次型f(x1,x2,x3)=xTAx经正交变换x=Qy化为λy22+λy32(λ≠0),其中Q=(b>0,c>0).求一个可逆线性变换x=Pz化f为规范形.
设3阶实对称矩阵A满足A2=2A,已知二次型f(x1,x2,x3)=xTAx经正交变换x=Qy化为λy22+λy32(λ≠0),其中Q=(b>0,c>0).求a,b,c的值;
设相似.求一个可逆矩阵P,使得P-1AP=B;
设A=E-ααT,α为3维非零列向量.(I)求A-1,并证明:α与Aα线性相关;(Ⅱ)若α=(α,α,α)T(a≠0),求正交矩阵Q,使得QTAQ=A;(Ⅲ)在(Ⅱ)的基础上,A与A2是否合同?说明理由.
设函数f(x)是以T为周期的连续函数.(Ⅰ)证明:∫0x(t)dt可以表示成一个以T为周期的连续函数与kx之和,并求常数k;(Ⅱ)计算∫0xf(t)dt.
设A,B均是n阶方阵,已知A-E可逆,|B|=1,且(A-E)-1=B*-E,其中B*为B的伴随矩阵.则A-1=________.
设,下列矩阵中与A既不相似也不合同的是()
设3阶实对称矩阵A=(a1,a2,a3)有二重特征值λ1=λ2=2,且满足a1-2a3=(-3,0,6)T.k为何值时,A*+kE是正定矩阵?
随机试题
WhatisthesubjectofDr.Perry’srecentbook?
男性,73岁,尿频,排尿无力,尿线细,尿不尽感,逐渐加重10年余,曾经出现过多次急性尿潴留。既往:糖尿病15年,服药治疗。患者最不可能的问题是
A蠕虫B原虫滋养体C线虫卵D原虫包囊E血吸虫卵硫酸锌离心漂浮法检查的是
A、医师义务B、医师权利C、患者权利D、患者义务E、医患权利积极配合治疗属()
患者,女性,60岁。有房颤史,清晨起床自行上厕所时摔倒,家人发现其口角歪斜,自诉左侧肢体麻木,送医院检查:意识清楚,左侧偏瘫,CT示低密度影。最可能的诊断是
某城市地下铁道工程的土层渗透系数为5m/d,其透水性属于()。
个人(包括个体户和自然人)只要发生应税行为都应办理税务登记。()
进口报检应随附的单据或证件有()。
京杭大运河开凿于()。
Thefirsttwostagesinthedevelopmentofcivilizedmanwereprobablytheinventionofweaponsandthediscoveryoffire,altho
最新回复
(
0
)