首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)=(akcoskx+bksinkx),其中ak,bk(k=1,2,…,n)为常数.证明: (Ⅰ)f(x)在[0,2π)必有两个相异的零点; (Ⅱ)f(m)(x)在[0,2π)也必有两个相异的零点.
设f(x)=(akcoskx+bksinkx),其中ak,bk(k=1,2,…,n)为常数.证明: (Ⅰ)f(x)在[0,2π)必有两个相异的零点; (Ⅱ)f(m)(x)在[0,2π)也必有两个相异的零点.
admin
2019-05-11
33
问题
设f(x)=
(a
k
coskx+b
k
sinkx),其中a
k
,b
k
(k=1,2,…,n)为常数.证明:
(Ⅰ)f(x)在[0,2π)必有两个相异的零点; (Ⅱ)f
(m)
(x)在[0,2π)也必有两个相异的零点.
选项
答案
(Ⅰ)令F(x)=[*],显然,F’(x)=f(x).由于F’(x)是以2π为周期的可导函数,故F(x)在[0,2π]上连续,从而必有最大值与最小值.设F(x)分别在x
1
,x
2
达到最大值与最小值,且x
1
≠x
2
,x
1
,x
2
∈[0,2π),则F(x
1
),F(x
2
)也是F(x)在(-∞,+∞)上的最大值,最小值,因此x
1
,x
2
必是极值点.又F(x)可导,由费马定理知F’(x
1
)=f(x
1
)=0,F’(x
2
)=f(x
2
)=0. (Ⅱ)f
(m)
(x)同样为(Ⅰ)中类型的函数即可写成f
(m)
(x)=[*](α
k
coskx+β
k
sinkx),其中α
k
,β
k
(k=1,2,…,n)为常数,利用(Ⅰ)的结论,f
(m)
(x)在[0,2π)必有两个相异的零点.
解析
转载请注明原文地址:https://jikaoti.com/ti/QhLRFFFM
0
考研数学二
相关试题推荐
设f(χ)连续,且f(0)=0,f′(0)≠0.求,其中D:χ2+y2≤t2.
设f(χ)二阶连续可导,且f〞(χ)≠0.又f(χ+h)=f(χ)+f′(χ+θh)h(0<θ<1).证明.
微分方程y〞-y′-6y=(χ+1)e-2χ的特解形式为().
设φ1(χ),φ2(χ)为一阶非齐次线性微分方程y′+P(χ)y=Q(χ)的两个线性无关的特解,则该方程的通解为().
求微分方程的通解.
设矩阵A=可逆,α=为A*对应的特征向量.(1)求a,b及α对应的A*的特征值;(2)判断A可否对角化.
微分方程掣=y(χy-χ+y-1)的通解为________.
细菌的增长率与总数成正比.如果培养的细菌总数在24h内由100增长到400,求前12h后的细菌总数.
细菌的增长率与总数成正比.如果培养的细菌总数在24h内由100增长到400,求前12h后的细菌总数.
随机试题
有关地方各级人民政府机构设置和编制管理的说法,下列哪些选项是正确的?
以下描述中不属于ASP.NET的特色与优势的是()。
王安石的变法理论和变法口号可归结为“三不足”,下列不属于“三不足”范围的是
诊断Χ线照片影像的密度范围是
国家实行医师资格考试制度,目的是检查评价申请医师资格者是否具备
男,40岁,体重70kg。因右股骨头坏死拟定于下月行手术治疗。门诊查体:一般情况好,BP130/85mmHg,心肺腹(-)。实验室检查:RBC5.0×1012/L,WBC4.6×109/L,Plt200×109/L,出凝血时间正常。患者2年前曾因右股骨颈骨
[2011年,第64题]图5.7-2所示悬臂梁AB由三根相同的矩形截面直杆胶合而成。材料的许可应力为[σ]。若胶合面开裂,假设开裂后三根杆的挠曲线相同,接触面之间无摩擦力。则开裂后的梁承载能力是原来的()。
下列选项中,不违反法律规定的证券交易行为是()。
求微分方程y”+y=x+cosx的通解.
StaffDevelopment:theimportancetoacompanyofreliableemployees
最新回复
(
0
)