首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
将三封信随机地投入编号为1,2,3,4的四个邮筒.记X为1号邮筒内信的数目,Y为有信的邮筒数目.求:(I)(X,Y)的联合概率分布; (Ⅱ)Y的边缘分布; (Ⅲ)在X=0条件下,关于Y的条件分布.
将三封信随机地投入编号为1,2,3,4的四个邮筒.记X为1号邮筒内信的数目,Y为有信的邮筒数目.求:(I)(X,Y)的联合概率分布; (Ⅱ)Y的边缘分布; (Ⅲ)在X=0条件下,关于Y的条件分布.
admin
2017-08-07
38
问题
将三封信随机地投入编号为1,2,3,4的四个邮筒.记X为1号邮筒内信的数目,Y为有信的邮筒数目.求:(I)(X,Y)的联合概率分布; (Ⅱ)Y的边缘分布; (Ⅲ)在X=0条件下,关于Y的条件分布.
选项
答案
(I)(X,Y)的全部可能取值为(0,1),(0,2),(0,3),(1,2),(1,3),(2,2),(3,1),再分别计算相应概率. 事件{X=0,Y=1}表示“三封信均投入后3个邮筒中的某一个邮筒内”.依古典概型公式,样本空间所含样本点数为4
3
=64,有利于事件{X=0,Y=1}的样本点数为C
3
1
=3,于是 [*] 另一种计算事件{X=0,Y=1}的概率的方法是用乘法公式: [*] 类似地可以计算出各有关概率值,列表如下: [*] (Ⅱ)从表中看出Y只取1,2,3三个可能值,相应概率分别是对表中p
ij
的各列求和.于是Y的边缘分布为表中最后一行的值. [*] 在X=0条件下,关于Y的条件分布,可以应用上述公式计算出来,列表如下: [*]
解析
转载请注明原文地址:https://jikaoti.com/ti/QZVRFFFM
0
考研数学一
相关试题推荐
(2003年试题,八)设函数f(x)连续且恒大于零,其中Ω(t)={(x,y,z)|x2+y2+z2≤t2},D(t)={(x,y)|x2+y2≤t2}.证明当t>0时,.
(2001年试题,十一)设某班车起点站上客人数X服从参数为λ(λ>0)的泊松分布,每位乘客在中途下车的概率为p(0
(2002年试题,一)已知实二次型f(x1,x2,x3)=a(x12+x22+x32)+4x1x2+4x1x3+4x2x3经正交变换x=Py可化成标准形f=6y12,则a=______________.
(2009年试题,21)设二次型f(x1,x2,x3)=a22+a22+(a一1)x32+2x1x3—2x2x3.求二次型f的矩阵的所有特征值;
(2011年试题,21)A为三阶实对称矩阵,A的秩为2,即rA=2,且求矩阵A.
(2003年试题,十二)设总体X的概率密度为其中θ>0是未知参数,从总体x中抽取简单随机样本X1,X2,…,Xn,记θ=min(X1,X2,…,Xn)求统计量θ的分布函数Fθ(x);
(2008年试题,20)设α,β为三维列向量,矩阵A=ααT+ββT,其中αT为α的转置,βT为β的转置.若α,β线性相关,则rA
(1997年试题,三)在某一人群中推广新技术是通过其中已掌握新技术的人进行的.设该人群的总人数为N,在t=0时刻已掌握新技术的人数为x0,在任意时刻t已掌握新技术的人数为x(t)(将x(t)视为连续可微变量),其变化率与已掌握新技术人数之积成正比,比例常数
设f(x,y),φ(x,y)均有连续偏导数,点M0(x0,y0)是函数z=f(x,y)在条件φ(x,y)=0下的极值点,又φ’(x0,y0)≠0,求证:曲面z=f(x,y)与柱面φ(x,y)=0的交线F在点P0(z0,y0,z0)(z0=f(x0,y0
已知矩阵,试判断矩阵A和B否相似,若相似则求出可逆矩阵P,使P-1AP=B,若不相似则说明理由.
随机试题
下列与导线的直流电阻有关的是()。
进行大坝溢流模型实验,应遵循()设计实验。
计算机的移动硬件设备包括( )。
某份CIF合同,卖方采用定程租船方式装载货物,在租船合同中规定,装货时间是6个24小时晴天工作日,该批货物于6月12日开始装船,下列()不应计入装货时间。
1999年10月,江西省新华书店、省外文书店和南昌市新华书店3家合并,组建了江西省新华书店联合有限公司。如今江西省店已经与全省11个中心门店和部分县店建立了跨地区的直营连锁经营关系,与40余家符合条件的书店建立了加盟连锁关系,还有行业外的加盟店3个,初步建
幽默使人如沐春风,也能解除尴尬。一个懂得幽默的人,会知道如何化解眼前的障碍。我们有时无意中让紧张代替了轻松,让严肃代替了平易,一不小心就变成了无趣的人。对这段话,理解不准确的是:
禁止步行者闯红灯的规定没有任何效果,总是违反该规定的步行者显然没有受到它的约束,而那些遵守规定的人显然又不需要它,因为即使不禁止步行者闯红灯,这些人也不会闯红灯。下面哪一个选项最准确地指出了上述论证中的漏洞?
"Today,Californiatookoffagiantsteptowardabrighterfutureforthe【S1】______frailelderlypatientswhoreceivecar
Crimesbychildrenhavebeenrisingatafasterratethanthejuvenilepopulation.Abouthalfofsuchcrimesinvolvethetraditi
Cancerofthelungisstilltheleadingcauseofcancerdeathinmenandwomenworldwide,andalthoughitsincidenceinmenmay
最新回复
(
0
)