首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
η*是非齐次线性方程组Aχ=b的一个解,ξ1,…,ξn-r是对应的齐次线性方程组的一个基础解系.证明: (1)η*,ξ1…,ξn-r线性无关; (2)η*,η*+ξ1,…,η*+ξn-r线性无关.
η*是非齐次线性方程组Aχ=b的一个解,ξ1,…,ξn-r是对应的齐次线性方程组的一个基础解系.证明: (1)η*,ξ1…,ξn-r线性无关; (2)η*,η*+ξ1,…,η*+ξn-r线性无关.
admin
2016-05-09
18
问题
η
*
是非齐次线性方程组Aχ=b的一个解,ξ
1
,…,ξ
n-r
是对应的齐次线性方程组的一个基础解系.证明:
(1)η
*
,ξ
1
…,ξ
n-r
线性无关;
(2)η
*
,η
*
+ξ
1
,…,η
*
+ξ
n-r
线性无关.
选项
答案
(1)假设η
*
,ξ
1
,…,ξ
n-r
线性相关,则存在不全为零的数c
0
,c
1
,…,c
n-r
使得下式成立 c
0
η
*
+c
1
ξ
1
+…+c
n-r
ξ
n-r
=0, (1) 用矩阵A左乘上式两边,得 0=A(c
0
η
*
+c
1
ξ
1
+…+c
n-r
ξ
n-r
)=c
0
Aη
*
+c
1
Aξ
1
+…+c
n-r
Aξ
n-r
=c
0
b, 其中b≠0,则由上式c
0
=0,于是(1)式变为 c
1
ξ
1
+…+c
n-r
ξ
n-r
=0, ξ
1
,…,ξ
n-r
是对应的齐次线性方程组的一个基础解系,故ξ
1
,…,ξ
n-r
线性无关,因此c
1
=c
2
=…=c
n-r
=0,与线性相关矛盾. 因此由定义知,η
*
,ξ
1
,…,ξ
n-r
线性无关. (2)假设η
*
,η
*
+ξ
1
,η
*
+ξ
n-r
线性相关,则存在不全为零的数c
0
,c
1
,…,c
n-r
使得下式成立 c
0
η
*
+c
1
(η
*
+ξ
1
)+…+c
n-r
(η
*
+ξ
n-r
)=0, 即(c
0
+c
1
+…+c
n-r
)η
*
+c
1
ξ
1
+…+c
n-r
ξ
n-r
=0. (2) 用矩阵A左乘上式两边,得 0=A[(c
0
+c
1
+…+c
n-r
)η
*
+c
1
ξ
1
+…+c
n-r
ξ
n-r
] =(c
0
+c
1
…+c
n-r
)Aη
*
+c
1
Aξ
1
+…+c
n-r
Aξ
n-r
=(c
0
+c
1
…+c
n-r
)b, 因为b≠0,故c
0
+c
1
+…+c
n-r
=0,代入(2)式,有 c
1
ξ
1
+…+c
n-r
ξ
n-r
=0, ξ
1
,ξ
n-r
是对应的齐次线性方程组的一个基础解系,故ξ
1
,ξ
n-r
线性无关,因此c
1
=c
2
=…= c
n-r
=0,即得c
0
=0.与假设矛盾. 综上,所给向量组η
*
,η
*
+ξ
1
,…,η
*
+ξ
n-r
线性无关.
解析
转载请注明原文地址:https://jikaoti.com/ti/Q2PRFFFM
0
考研数学一
相关试题推荐
[*]
已知函数z=u(x,y)eax+by,且,确定常数a和b,使函数z=z(x,y)满足方程,则a=,b=.
设二次型f(x1,x2)=ax12+bx22+4x1x2经过正交变换x=Qy化为g(y1,y2)=2y12+2y1y2二次型f与g的矩阵分别为A与B求a,b的值
设函数y=f(x)由参数方程(0<t≤1)确定证明:y=f(x)在[1,﹢∞)上单调增加
设A=,若齐次方程组AX=0的任一非零解均可用a线性表示,则a=().
设矩阵Am×n,r(A)=m<n,Em为m阶单位矩阵,下述结论中正确的是().
计算I=∫Leydx-(cosy-xey)dy,其中L是由点A(-1,1)沿曲线y=x2到点O(0,0),再沿直线到点B(2,0),再沿圆弧y=到点C(0,2)的路径.
计算二重积分(x+y)dσ,其中区域D是由直线x=-2,y=0,y=2及曲线x=-所围成的平面区域.
已知4阶方阵A=(α1,α2,α2,α4),α1,α2,α3,α4均为4维列向量,其α2,α3,α4线性无关,α=2α2-aα3,如果β=α1+α2+α3+α
随机试题
什么是聚氨酯清漆?有什么作用和特点?
失血性休克救治中,不属于一般监测的是
下列选项中,不是慢性牙髓炎的病理改变的是
房劳过度耗伤
关于世界贸易组织与原关贸总协定的区别与联系,下列说法正确的是()
已知级数与广义积分∫0+∞e(p–2)xdx均收敛,则p的取值范围是()。
在重大事件揭示中,半年度报告只报告期内改聘会计师事务所的情况,无须披露支付给聘任会计师事务所的报酬及事务所已提供审计服务的年限等。( )
成就动机
A、 B、 C、 D、 C
有如下类声明:classSAMPLE{intn;public:SAMPLE(inti=0):n(i){}voidsetValue(intn0);};下列关于getVa
最新回复
(
0
)