首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A是n阶矩阵,对于齐次线性方程组(I)Anx=0和(Ⅱ)An+1x=0,现有四个命题: ①(I)的解必是(Ⅱ)的解; ②(Ⅱ)的解必是(I)的解 ③(I)的解不是(Ⅱ)的解; ④(Ⅱ)的解不是(I)的解。 以上命题中正确的是( )
设A是n阶矩阵,对于齐次线性方程组(I)Anx=0和(Ⅱ)An+1x=0,现有四个命题: ①(I)的解必是(Ⅱ)的解; ②(Ⅱ)的解必是(I)的解 ③(I)的解不是(Ⅱ)的解; ④(Ⅱ)的解不是(I)的解。 以上命题中正确的是( )
admin
2018-12-19
36
问题
设A是n阶矩阵,对于齐次线性方程组(I)A
n
x=0和(Ⅱ)A
n+1
x=0,现有四个命题:
①(I)的解必是(Ⅱ)的解; ②(Ⅱ)的解必是(I)的解
③(I)的解不是(Ⅱ)的解; ④(Ⅱ)的解不是(I)的解。
以上命题中正确的是( )
选项
A、①②。
B、①④。
C、③④。
D、②③。
答案
A
解析
若A
n
α=0,则A
n+1
α=A(A
n
α)=A0=0,即若α是(1)的解,则α必是(2)的解,可见命题①正确。
如果A
n+1
α=0,而A
n
α≠0,那么对于向量组α,Aα,A
2
α,…,A
n
α,一方面,若kα+k
1
Aα+k
2
A
2
α+…+k
n
A
n
α=0,用A
n
左乘上式的两边得kA
n
α=0。由A
n
α≠0可知必有k=0。类似地可得k
1
=k
2
=…=
n
=0。因此,α,Aα,A
2
α,…,A
n
α线性无关。
但另一方面,这是n+1个n维向量,它们必然线性相关,两者矛盾。故A
n+1
α=0时,必有A
n
α=0,即(2)的解必是(1)的解。因此命题②正确。
故选A。
转载请注明原文地址:https://jikaoti.com/ti/OzWRFFFM
0
考研数学二
相关试题推荐
A为3阶实对称矩阵,A的秩为2,且求A的所有特征值与特征向量;
证明:已知λ1,λ2,λ3是A的特征值,α1,α2,α3是相应的特征向量且线性无关,如α1+α2+α3仍是A的特征向量,则λ1=λ2=λ3.
已知矩阵只有一个线性无关的特征向量,那么A的三个特征值是________.
已知方程组有解,证明:方程组无解.
设,A*是A的伴随矩阵,则A*x=0的通解是______________.
已知r(α1,α2,α3)=2,r(α2,α3,α4)=3,证明a4不能由α1,α2,α3线性表示.
已知n元齐次线性方程组A1x=0的解全是A2x=0的解,证明A2的行向量可以由A1的行向量线性表示.
设A、B是n阶矩阵,E一AB可逆,证明:E一BA可逆.
已知函数f(x,y)=,则_________.
设函数f(x)在区间[0,1]上连续,且求∫01dx∫x1f(x)f(y)dy
随机试题
胃癌的转移途径中主要是
通过黏膜吸收的给药途径是
在项目的国民经济评价中,属于转移支付的有()。
下列关于税收的说法中,不正确的有()。
汉译英:“产地证书、兽医证书、熏蒸证书”。( )
当事人对已经发生法律效力的判决,认为有错误的,只要向原审人民法院申请再审,该判决就应停止执行。()
课堂情境结构对课堂纪律的影响主要表现在教师对学生的控制上。
电视剧里出现的一些古代场景,常有令人啼笑皆非的文史错误。下列电视剧中的场景没有违背史实的是()。
以下叙述中正确的是
Ourjourneywasslowbecausethetrainstopped______atdifferentvillages.
最新回复
(
0
)