设L是上半椭圆x2+4y2=1,y≥0,L1是四分之一椭圆x2+4y2=1,x≥0,y≥0,则( )

admin2019-05-12  31

问题 设L是上半椭圆x2+4y2=1,y≥0,L1是四分之一椭圆x2+4y2=1,x≥0,y≥0,则(    )

选项 A、∫L(x+y)ds=2∫L1(x+y)ds.
B、∫Lxyds=2∫L1xyds.
C、∫Lx2ds=2∫L1y2ds.
D、∫L(x+y)2ds=2∫L1(x2+y2)ds.

答案D

解析 由于积分曲线L关于y轴对称,所以
Lxds=0, ∫Lxyds=0,
Lyds=2∫L1yds,∫Lx2ds=2∫L1x2ds,∫Ly2ds=2∫L1y2ds.
    注意到∫Lx2ds=2∫L1x2ds≠2∫L1y2ds=∫Ly2ds,从而排除A、B、C,故应选D.事实上
L(x+y)2ds=∫L(x2+2xy+y2)ds=∫L(x2+y2)ds+∫L2xyds
    =2∫L1(x2+y2)ds+0=2∫L1(x2+y2)ds.
转载请注明原文地址:https://jikaoti.com/ti/NEoRFFFM
0

最新回复(0)