首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
求下列齐次线性方程组的基础解系: (3)nx1+(n一1)x2+…+2xn-1+xn=0.
求下列齐次线性方程组的基础解系: (3)nx1+(n一1)x2+…+2xn-1+xn=0.
admin
2016-03-05
42
问题
求下列齐次线性方程组的基础解系:
(3)nx
1
+(n一1)x
2
+…+2x
n-1
+x
n
=0.
选项
答案
(1)方程组的系数矩阵[*]所以r(A)=2,因此基础解系所含向量的个数为4—2=2,又原方程组等价于[*]取x
3
=1,x
4
=5,得x
1
=一4,x
2
=2;取x
3
=0,x
4
=4,得x
1
=0,x
2
=1.因此基础解系为[*] (2)方程组系数矩阵[*]得r(A)=2,基础解系所含向量的个数为4—2=2.又原方程组等价于[*]取x
3
=1,x
4
=2得x
1
=0,x
2
=0;取x
3
=0,x
4
=19,得x
1
=1,x
2
=7.因此基础解系为[*] (3)记A=(n,n一1,…,1),可见r(A)=1,从而有n一1个线性无关的解构成此方程的基础解系,原方程组为x
s
=一nx
1
一(n一1)x
2
-…一2x
n-1
.取x
1
=1,x
2
=x
3
=…=x
x-1
=0,得x
n
=一n;取x
2
=1,x
1
=x
3
=x
4
=…=x
x-1
=0,得x
n
=一(n一1)=一n+1:……取x
n-1
=1,x
1
=x
2
=…=x
n-2
=0,得x
n
=一2.所以基础解系为[*]
解析
转载请注明原文地址:https://jikaoti.com/ti/MUDRFFFM
0
考研数学二
相关试题推荐
设3阶实对称矩阵A=(a1,a2,a3)有二重特征值λ1=λ2=2,且满足a1-2a3=(-3,0,6)T.求正交变换x=Qy,将二次型f(x1,x2,x3)=xTAx化为标准形;
设3阶实对称矩阵A=(a1,a2,a3)有二重特征值λ1=λ2=2,且满足a1-2a3=(-3,0,6)T.求A;
设不能相似于对角矩阵,则()
设向量a=(1,1,-1)T是的一个特征向量.证明:A的任一特征向量都能由a线性表示.
利用变换x=-㏑t将微分方程d2y/dx2+dy/dx+e-2xy-e-3x化简为y关于t的微分方程,并求原微分方程的通解y(x);
已知一抛物线过Ox轴上两点A(1,0)、B(3,0),记0≤x≤1时,抛物线与Ox轴、Oy轴围成的平面图形为S1,在1≤x≤3上抛物线与Ox轴围成的平面图形为S2.求S1与S2绕Oy轴旋转一周所产生的两个旋转体的体积之比.
试求由直线x=1/2与抛物线y2=2x所围成的平面图形绕y=1旋转一周所得旋转体的体积和表面积.
设齐次线性方程组(I)为又已知齐次线性方程组(Ⅱ)的基础解系为α1=(0,1,1,0)T,α2=(一1,2,2,1)T.试问a,b为何值时,(I)与(Ⅱ)有非零公共解?并求出所有的非零公共解.
设A是n阶实对称矩阵,P是n阶可逆矩阵,已知n维列向量α是A的属于特征值λ的特征向量,则矩阵P-1AP属于特征值λ的特征向量是().
(Ⅰ)设n维向量α1,α2,α3,α4线性无关.βi=αi+tα4(i=1,2,3),证明:β1,β2,β3对任意t都线性无关;(Ⅱ)设n维向量α1,α2,α3,α4满足=0,βi=αi+iλiξ,i=1,2,3,4,问λi(i=1,2,3,4)
随机试题
将钢件加热到一定程度,保温一定时间后,移出炉外,在空气中冷却的热处理方法称为_________。
精馏过程设计时,增大操作压强,塔顶温度()。
职业教育的终身性
整个预算工作的中心环节是
Eachcarsoldinthisspecializedshopcomeswithaone-year______.
实验证明甲药和乙药被同一拮抗药拮抗,且两药的pA2相近,则说明:
北京甲建筑公司通过电子邮件向南京乙公司发出订购一批水泥的要约,此要约的生效时间为()。
企业签发银行承兑汇票用于清偿B企业的欠款,这一经济业务引起的会计要素变化是()。
记账后在当年内发现记账凭证所记的会计科目错误,从而引起记账错误应采用()。
A、Wearingarmweightswhileyouareswimming.B、Joggingvigorouslyinoneplaceforalongtime.C、Usingbicyclesthatrequirey
最新回复
(
0
)