首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设矩阵A=(α1,α2,α3),其中α1,α2,α3是4维列向量,已知非齐次线性方程组Ax=b的通解为x=k(1,一2,3)T+(1,2,一1)T,k为任意常数. 试求α1,α2,α3的一个极大线性无关组,并把向量b用此极大线性无关组线性表示;
设矩阵A=(α1,α2,α3),其中α1,α2,α3是4维列向量,已知非齐次线性方程组Ax=b的通解为x=k(1,一2,3)T+(1,2,一1)T,k为任意常数. 试求α1,α2,α3的一个极大线性无关组,并把向量b用此极大线性无关组线性表示;
admin
2016-01-11
45
问题
设矩阵A=(α
1
,α
2
,α
3
),其中α
1
,α
2
,α
3
是4维列向量,已知非齐次线性方程组Ax=b的通解为x=k(1,一2,3)
T
+(1,2,一1)
T
,k为任意常数.
试求α
1
,α
2
,α
3
的一个极大线性无关组,并把向量b用此极大线性无关组线性表示;
选项
答案
(1)由题设条件可知ξ=(1,一2,3)
T
是对应的齐次线性方程组Ax=0的一个基础解系,所以r(A)=3—1=2;η=(1,2,一1)
T
为非齐次线性方程组Ax=b的一个特解. 于是有[*] 由(1)可得α
1
=2α
2
—3α
3
,即α
1
可用α
2
,α
3
线性表示,则α
2
,α
3
线性无关,否则r(α
1
,α
2
,α
3
)=1与r(A)=2矛盾,所以α
1
,α
2
,α
3
的一个极大线性无关组可取为α
2
,α
3
.由(2)可得 b=α
1
+2α
2
一α
3
=4α
2
一4α
3
.
解析
本题是抽象型非齐次线性方程组的典型情形.只要从题设条件求得对应齐次线性方程组Ax=0的一个基础解系与非齐次线性方程组Ax=b的一个特解即可.其中一个关键问题仍是确定系数矩阵A的秩,由此可知基础解系中包含线性无关解向量个数.
转载请注明原文地址:https://jikaoti.com/ti/M9DRFFFM
0
考研数学二
相关试题推荐
设P为可逆矩阵,A=PTP.证明:A是正定矩阵.
设A为n阶正定矩阵.证明:对任意的可逆矩阵P,PTAP为正定矩阵.
设f(x)有连续的导数,f
设平面区域D由直线x=1,x-y=2与曲线y=围成,f(x,y)是D上的连续函数,则下列选项中的是().
设f(x)为不恒等于零的奇函数,Rf’(0)存在,则函数g(x)=().
某企业在两个不同市场上销售同一产品,市场价格分别为p1=18—2Q1,p2=12一Q2,其中Q1,Q2分别表示产品在两个市场上的需求量,该企业的总成本为C=2Q+5,其中Q=Q1+Q2。(I)若企业实行价格不同战略,试确定两个市场上产品的产量及价格,使得
设相似.求方程组(3E-A*)x=0的通解.
设A为n阶实对称矩阵,且A2=A,r(A)=r(0<r<n),则行列式|A-2E|=________.
设(1)计算行列式|A|;(2)当实数a为何值时,方程组Ax=β有无穷多解,并求其通解.
设n阶方阵A、B、C满足关系式ABC=E,其中E是n阶单位阵,则必有
随机试题
丁克家庭
下列提示原发性肺结核病恶化的病理转归是
我国旅游业产生于20世纪20年代。()
就食品营养标签制作而言,产品分析的最终目标是获得可以用于标示的食物营养成分基础数据。
桑代克根据其实验提出了的学习定律包括()。
根据《行政监察法》的规定,行政监察机关有权对处于监察过程中的监察对象的违法行为进行立案侦查。()
胃酸具有帮助消化的作用,但是胃酸过多会给人带来不适,下列选项中,关于胃酸不正确的说法是()。
A、 B、 C、 D、 C
某地为了加强社会治安综合治理的力度,决定由公安、检察院、法院共同成立“三家联合办案”机构,从快从重处理刑事案件。此举在法学界引起较大争议,一些学者撰文表示反对,而另一些人则认为这是长期积累的成功经验,应予坚持。请结合所学法律知识和基本原理,谈谈你的认识,并
Readthearticlebelowabouttimemanagementandmoney.Inmostofthelines(34-45)thereisoneextraword.Iteitherisgra
最新回复
(
0
)