首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设α1,α2,…,αm与β1,β2,…,βs为两个n维向量组,且r(α1,α2,…,αm)=r(β1,β2,…,βs)=r,则( ).
设α1,α2,…,αm与β1,β2,…,βs为两个n维向量组,且r(α1,α2,…,αm)=r(β1,β2,…,βs)=r,则( ).
admin
2020-03-01
37
问题
设α
1
,α
2
,…,α
m
与β
1
,β
2
,…,β
s
为两个n维向量组,且r(α
1
,α
2
,…,α
m
)=r(β
1
,β
2
,…,β
s
)=r,则( ).
选项
A、两个向量组等价
B、r(α
1
,α
2
,…,α
m
,β
1
,β
2
,…,β
s
)=r
C、若向量组α
1
,α
2
,…,α
m
可由向量组β
1
,β
2
,…,β
s
线性表示,则两向量组等价
D、两向量组构成的矩阵等价
答案
C
解析
不妨设向量组α
1
,α
2
,…,α
m
的极大线性无关组为α
1
,α
2
,…,α
r
,向量组β
1
,β
2
,…,β
s
的极大线性无关组为β
1
,β
2
,…,β
s
,若α
1
,α
2
,…,α
m
可由β
1
,β
2
,…,β
s
线性表示,则α
1
,α
2
,…,α
r
,也可由β
1
,β
2
,…,β
s
线性表示,若β
1
,β
2
,…,β
s
不可由α
1
,α
2
,…,α
r
,线性表示,则β
1
,β
2
,…,β
s
也不可由α
1
,α
2
,…,α
m
线性表示,所以两向量组秩不等,矛盾,选(C).
转载请注明原文地址:https://jikaoti.com/ti/LdtRFFFM
0
考研数学二
相关试题推荐
(1997年)若f(-χ)=f(χ),(-∞<χ<∞),在(-∞,0)内f′(χ)>0,且f〞(χ)<0,则在(0,+∞)内
设A是三阶实对称矩阵,E是三阶单位矩阵,若A2+A=2E.且|A|=4,则二次型xTAx规范形为()
设α1,α2,α3,α4为四维非零列向量组,令A=(α1,α2,α3,α4),AX=0的通解为X=k(0,-1,3,0)T,则A*X=0的基础解系为().
累次积分f(rcosθ,rsinθ)rdr可以写成().
设向量组(I)α1,α2,…,αr可由向量组(Ⅱ)β1,β2,…,βs线性表示,则()
设平面区域D:1≤χ2+y2≤4,f(χ,y)是区域D上的连续函数,则等于().
设当χ→0时,(χ→sinχ)ln(1+χ)是比-1高阶的无穷小,而-1是比(1-cos2t)dt高阶的无穷小,则n为().
设n阶矩阵A的伴随矩阵A*≠0,若ξ1,ξ2,ξ3,ξ4是非齐次线性方程组Ax=b的互不相等的解,则对应的齐次线性方程组Ax=0的基础解系
设函数u(x,y)=ψ(x+y)+ψ(x—y)+∫x-yx+yψ(t)dt,其中函数ψ具有二阶导数,ψ具有一阶导数。则必有
设A,B均是n阶非零矩阵,已知A2=A,B2=B,且AB=BA=O,则下列3个说法:①0未必是A和B的特征值;②1必是A和B的特征值;③若α是A的属于特征值1的特征向量,则α必是B的属于特征值0的特征向量.正确说法的
随机试题
女,6岁,因反复水肿、尿少4周入院。查:血压90/68mmHg,尿蛋白+++,尿红细胞3~5个/HP,尿白细胞0~3个/HP,血浆白蛋白25g/L,Ch9mmol/L。BUN7mmol/L。治疗其首选药物为
A.子宫脱垂Ⅰ度轻型B.子宫脱垂Ⅰ度重型C.子宫脱垂Ⅱ度轻型D.子宫脱垂Ⅱ度重型E.子宫脱垂Ⅲ度宫颈达处女膜缘。但未超出该缘
根据《证券法》关于上市公司及时向社会披露信息的规定,下列哪些表述是正确的?
在绝对收益的计算指标中,资产回报不包括()。
下列关于合同撤销权的描述,不正确的是( )。
()是我国著名的剪纸大师。
盖闻王者莫高于周文,伯者莫高于齐桓,皆待贤人而成名。今天下贤者智能,岂特古之人乎?患在人主不交故也,士奚由进!今吾以天之灵、贤士大夫定有天下,以为一家,欲其长久,世世奉宗庙亡绝也。贤人已与我共平之矣而不与吾共安利之可乎贤士大夫有肯从我游者吾能尊显之。布告天
A.硝普钠B.硝酸甘油C.酚妥拉明D.普萘洛尔抑制β受体,减慢心率,降低心排出量的是
简论唐代开元盛世局面形成的原因。
简述安史之乱的原因和后果。
最新回复
(
0
)