设函数f(x)在x=x0处具有二阶导数,且f’(x0)=0,f"(x0)≠0,证明当f"(x0)>0,f(x)在x=x0处取得极小值。

admin2017-12-29  40

问题 设函数f(x)在x=x0处具有二阶导数,且f’(x0)=0,f"(x0)≠0,证明当f"(x0)>0,f(x)在x=x0处取得极小值。

选项

答案由题设f"(x0)>0,且由导数的定义可知 [*] 则对于x0的去心邻域(x0一δ,x0)∪(x0,x0+δ)(δ>0),有[*]>0。 当x∈(x0一δ,x0)时,x—x0<0,则有f’(x)<0; 当x∈(x0,x0+δ)时,x—x0>0,则有f’(x)>0。 由第一充分条件可知,f(x)在点x0处取得极小值。

解析
转载请注明原文地址:https://jikaoti.com/ti/KgKRFFFM
0

最新回复(0)