首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设向量组α1,α2,…,αm(m>1)线性无关,且β=α1+α2+…+αm,证明:β-α1,β-α2,…,β-αm线性无关.
设向量组α1,α2,…,αm(m>1)线性无关,且β=α1+α2+…+αm,证明:β-α1,β-α2,…,β-αm线性无关.
admin
2021-02-25
23
问题
设向量组α
1
,α
2
,…,α
m
(m>1)线性无关,且β=α
1
+α
2
+…+α
m
,证明:β-α
1
,β-α
2
,…,β-α
m
线性无关.
选项
答案
设有数组λ
1
,λ
2
,…,λ
m
,使 λ
1
(β-α
1
)+λ
2
(β-α
2
)+…+λ
m
(β-α
m
)=0, 即 (λ
2
+λ
3
+…+λ
m
)α
1
+(λ
1
+λ
3
+…+λ
m
)α
m
+…+(λ
1
+λ
2
+…+λ
m-1
)α
m
=0, 由于α
1
,α
2
,…,α
m
线性无关,所以有 [*] 由于方程组的系数行列式 [*] 所以方程组只有零解,即λ
1
=λ
2
=…=λ
m
=0,故β-α
1
,β-α
2
,…,β-α
m
线性无关.
解析
本题考查向量组线性相关性的概念及判定.
转载请注明原文地址:https://jikaoti.com/ti/JjARFFFM
0
考研数学二
相关试题推荐
设A是n阶矩阵,证明方程组Ax=b对任何b都有解的充分必要条件是|A|≠0.
设f(χ)在[0,π]上连续,在(0,π)内可导,证明:至少存在一点ξ∈(0,π),使得f′(ξ)=-f(ξ)cotξ.
证明n维向量α1,α2……αn线性无关的充要条件是
设f(χ)在[a,b]上连续且单调增加,证明:∫abχf(χ)dχ≥∫abf(χ)dχ.
设函数f(x)在(0,+∞)上二阶可导,且f’’(x)>0,记un=f(n),n=1,2,…,又u1<u2,证明
设四阶矩阵B满足,求矩阵B.
已知A是n阶对称矩阵,B是n阶反对称矩阵,证明A—B2是对称矩阵。
设A为三阶实对称矩阵,A的每行元素之和为5,AX=0有非零解且λ1=2是A的特征值,对应特征向量为(-1,0,1)T.(1)求A的其他特征值与特征向量;(2)求A.
设二阶常系数线性微分方程y"+ay’+by=cex有特解y=e2x+(1+x)ex,确定常数a,b,c,并求该方程的通解.
设α1,α2,α3为四维列向量组,α1,α2线性无关,α3=3α1+2α2,A=(α1,α2,α3),求Ax=0的一个基础解系.
随机试题
回路配接设备在列表显示方式下,第三列为设备类型以及对应的盘号键值。()
从价值观念层面上看,改革开放以来,人们身上最重要的变化表现有()。
辛弃疾《水龙吟·登建康赏心亭》下片运用的主要抒情方法是借叙事抒情。()
胸椎结核截瘫的原因为
不属于"子病犯母"脏腑传变发病的是
乙公司计划以并购的形式进入高端制造业。为确保并购出价合理,公司管理层需要对并购对象的价值进行评估。下列选项中,该公司管理层可以采用的方法包括()。
民事主体在法律允许的范围内有完全的意志的自由,自主实施民事法律行为,参加民事法律关系,任何单位和个人都不得非法干预。这体现了()。
一台交换机具有24个10/100Mbps端口和2个1000Mbps端口,如果所有端口都工作在全双工状态,那么交换机总带宽应为()。
为了避免流程图在描述程序逻辑时的灵活性,提出了用方框图来代替传统的程序流程图,通常也把这种图称为______。
在窗体上画一个命令按钮和一个文本框(名称分别为Command1和Text1),并把窗体的KeyPreview属性设置为True,然后编写如下代码:DimSaveAllAsStringPrivateSubForm_Load() Show
最新回复
(
0
)