首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
求二元函数z=f(x,y)=x2y(4-x-y)在由x轴,y轴及x+y=6所围成的闭区域D上的最小值和最大值。
求二元函数z=f(x,y)=x2y(4-x-y)在由x轴,y轴及x+y=6所围成的闭区域D上的最小值和最大值。
admin
2021-11-25
36
问题
求二元函数z=f(x,y)=x
2
y(4-x-y)在由x轴,y轴及x+y=6所围成的闭区域D上的最小值和最大值。
选项
答案
(1)求f(x,y)在区域D边界上的最值: 在L
1
:y=0(0≤x≤6)上,z=0 在L
2
:x=0(0≤y≤6)上,z=0 在L
3
:y=6-x(0≤x≤6)上,z=-2x
2
(6-x)=2x
3
-12x
2
由[*]=6x
2
-24x=0得x=4,因为f(0,6)=0,f(6,0)=0,f(4,2)=-64,所以f(x,y)在L
3
上最小值为-64,最大值为0. (2)在区域D内,由[*]得驻点为(2,1) [*] 因为AC-B
2
>0且A<0,所以(2,1)为f(x,y)的极大值点,极大值为f(2,1)=4,故z=f(x,y)在D上的最小值为m=f(4,2)=-6,最大值为M=f(2,1)=4.
解析
转载请注明原文地址:https://jikaoti.com/ti/G7lRFFFM
0
考研数学二
相关试题推荐
f(x,y)=在点(1,0)处()
把x→0﹢时的无穷小量α=∫0x2tantdt,β=∫0xcost2dt,γ=sint3dt按从高阶到低阶排列,则正确的排列次序是()
设A为3阶实对称矩阵,α1=(1,﹣1,﹣1)T,α2=(﹣2,1,0)T是齐次线性方程Ax=0的基础解系,且矩阵A-6E不可逆,则(Ⅰ)求齐次线性方程组(A-6E)x=0的通解;(Ⅱ)求正交变换x=Qy将二次型xTAx化为标准形;(Ⅲ)求(A-3E
根据k的不同取值情况,讨论方程x3-3x+k=0实根的个数。
已知ζ=(-1,2,-3)T是矩阵A=的一个特征向量。(Ⅰ)试确定参数a,b以及ζ所对应的特征值λ;(Ⅱ)A能否对角化,如果能,试求可逆矩阵P,使得A相似于对角矩阵。
设g(x)在(-∞,+∞)内存在二阶导数,且g″(x)
已知二次型f(x1,x2,x3)=2x12+3x22+3x32+2ax2x3(a>0),若二次型f的标准形为f=y12+2y22+5y32,求a的值及所使用的正交变换矩阵。
已知A,B为3阶矩阵,且满足2A-1B=B-4E,其中E为3阶单位矩阵.证明:矩阵A-2E可逆;
设f(χ),g(χ)在[a,b]上连续,在(a,b)内可导,且g′(χ)≠0.证明:存在ξ∈(a,b),使得
[2017年]甲、乙两人赛跑,计时开始时,甲在乙前方10(单位:m)处,如图1.3.5.19,实线表示甲的速度曲线v=v1(t)(单位:m/s),虚线表示乙的速度曲线v=v2(t),三块阴影部分面积的数值依次为10,20,3,计时开始后乙追上甲的时刻记
随机试题
Itisnaturalthatyoungpeopleareoftenuncomfortablewhentheyarewiththeirparents.Theysaythat【61】parentsdon’t【62】them
下列哪项超声表现是支持软组织内金属异物最重要的证据:
抗菌药的作用机制的叙述不正确的是
氧化与磷酸化偶联的部位是
不安抗辩权是指按照合同规定( )享有的中止履行义务的权利。
在1993~1998年中国海外直接投资的调整发展阶段,中国政府提出了发展海外投资的新的战略方针,即()。
爱因斯坦拒绝了以色列入邀请他当总统的请求,他说自己擅长的是与物理有关的科学研究。谈谈你对学校行政化管理的认识。
已知y1*(χ)=χe-χ+e-2χ,y2*(χ)=χe-χ+χe-2χ,y3*(χ)=χe-χ+e-2χ+χe-2χ是某二阶线性常系数微分方程y〞+py′+qy=f(χ)的三个解,则这个方程是_______.
阅读下列说明,回答问题,将解答填入答题纸的对应栏内。【说明】某企业包括生产部和公共服务部两个重要部门,其内部网络系统拓扑示意图如下图所示。请说明图中交换机划分VLAN的主要作用。
十进制数60转换成二进制数是()。
最新回复
(
0
)