首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设有齐次线性方程组Ax=0和Bx=0,其中A,B均为m×n矩阵,现有四个命题: ①若Ax=0的解均是Bx=0的解,则r(A)≥r(B); ②若r(A)≥r(B),则Ax=0的解均是Bx=0的解; ③若Ax=0与Bx=0同解,则r(A)=r(B); ④若r(
设有齐次线性方程组Ax=0和Bx=0,其中A,B均为m×n矩阵,现有四个命题: ①若Ax=0的解均是Bx=0的解,则r(A)≥r(B); ②若r(A)≥r(B),则Ax=0的解均是Bx=0的解; ③若Ax=0与Bx=0同解,则r(A)=r(B); ④若r(
admin
2018-12-29
26
问题
设有齐次线性方程组Ax=0和Bx=0,其中A,B均为m×n矩阵,现有四个命题:
①若Ax=0的解均是Bx=0的解,则r(A)≥r(B);
②若r(A)≥r(B),则Ax=0的解均是Bx=0的解;
③若Ax=0与Bx=0同解,则r(A)=r(B);
④若r(A)=r(B),则Ax=0与Bx=0同解。
以上命题中正确的有( )
选项
A、①②。
B、①③。
C、②④。
D、③④。
答案
B
解析
由于线性方程组Ax=0和Bx=0之间可以无任何关系,此时其系数矩阵的秩之间的任何关系都不会影响它们各自解的情况,所以②,④显然不正确,利用排除法,可得正确选项为B。
下面证明①,③正确:
对于①,由Ax=0的解均是Bx=0的解可知,方程组Bx=0含于Ax=0之中。从而Ax=0的有效方程的个数(即r(A))必不少于Bx=0的有效方程的个数(即r(B)),故r(A)≥r(B)。
对于③,由于A,B为同型矩阵,若Ax=0与Bx=0同解,则其解空间的维数(即基础解系包含解向量的个数)相同,即n—r(A)=n—r(B),从而r(A)=r(B)。
转载请注明原文地址:https://jikaoti.com/ti/EK1RFFFM
0
考研数学一
相关试题推荐
=______,其中f(x)是大于零的连续函数.
二次积分=_______,
设x=y-εsiny(0<ε<为常数),它的反函数是y=y(x),则等于()
设级数an条件收敛,则幂级数(x-2)n的收敛区间为______.
设随机变量X和Y相互独立,其概率分布为则下列式子正确的是()
设向量α1,α2,α3线性无关,向量β1可由α1,α2,α3线性表示,向量β2不能由α1,α2,α3线性表示,则对任意常数k必有()
已知曲线积(A为常数),其中φ(y)具有连续的导数,且φ(1)=1.L是围绕原点O(0,0)的任意分段光滑简单正向闭曲线.证明:对右半平面x>0内的任意分段光滑简单闭曲线C,有
已知抛物线y=ax2+bx(其中a0)在第一象限内与直线x+y=5相切,且此抛物线与x轴所围成的平面图形的面积为S,问当a,b为何值时,S最大?最大值是多少?
设随机变量X1和X2各只有-1,0,1等三个可能值,且满足条件试在下列条件下分别求X1和X2的联合分布.P{X1X2=0}=1;
设曲线=1(0<a<4)与x轴、y轴所围成的图形绕x轴旋转所得立体体积为V1(a),绕y轴旋转所得立体体积为V2(a),问a为何值时,V1(a)+V2(a)最大,并求最大值.
随机试题
为解决行政审批制度改革中仍存在的选择性放权、名放实不放、明放暗收等问题,某省2013年开始推行“权力清单制度”改革:一是全面清权。对照法律法规及“三定”方案,结合工作实际、群众要求及行政审批制度改革情况,认真梳理各部门及内设机构的主要职能。对于各部门之间
APRPPBIMPCXMPDcGMPEAMP黄嘌呤核苷酸的缩写符号()
下列不是用于判断单侧忽略的实验是
患者,男,1岁半,发热3天伴随咳嗽。眼结膜充血水肿。半天前患儿耳后、颈部有稀疏的不规则红色斑丘疹,疹间皮肤正常。体温40℃,心肺无异常。如患儿合并肺炎,应隔离至出疹后()
执法为民是社会主义法治的本质要求,行政机关和公务员在行政执法中应当自觉践行。下列哪些做法直接体现了执法为民理念?(2012—卷二—76,多)
政府解决低收入家庭住房困难的主要渠道是提供()。
登记结算公司按照银货对付原则全面调整结算制度时,融资融券交易交收违约的处理措施和程序相应调整。()
写字楼物业管理企业与()签订物业服务合同,明确责、权、利关系,并制订业主公约或用户公约。
舞台上的演员不同于画室里的模特儿。舞蹈除自然美外,更注重艺术美,于是便要讲到衣饰。但这衣饰决不像旧戏那样给人套上死板的程式,也不像话剧那样过分地写实。它是绿荷上的露珠,是峭壁上的青藤,是红花下的绿叶,是翠柳上的黄鹂,是一种微妙的附着。这段文字主要谈
验收成箱包装的玻璃器皿,每箱24只装.统计资料表明,每箱最多有2只残品,且含0,1,2件残品的箱各占80%,15%,5%。现在随意抽取一箱,随意检验其中4只;若未发现残品则通过验收,否则要逐一检验并更换。试求通过验收的箱中确实无残品的概率.
最新回复
(
0
)